


Radar Equations for Modern Radar



For a complete listing of titles in the 
Artech House Radar Series,

turn to the back of this book.

DISCLAIMER OF WARRANTY

The technical descriptions, procedures, and computer programs in this book have been developed 
with the greatest of care and they have been useful to the author in a broad range of applications; 
however, they are provided as is, without warranty of any kind. Artech House and the author 
and editors of the book titled Radar Equations for Modern Radar make no warranties, expressed 
or implied, that the equations, programs, and procedures in this book or its associated software 
are free of error, or are consistent with any particular standard of merchantability, or will meet 
your requirements for any particular application. They should not be relied upon for solving a 
problem whose incorrect solution could result in injury to a person or loss of property. Any use 
of the programs or procedures in such a manner is at the user’s own risk. The editors, author, and 
publisher disclaim all liability for direct, incidental, or consequent damages resulting from use of 
the programs or procedures in this book or the associated software.



Radar Equations for Modern Radar

David K. Barton



Library of Congress Cataloging-in-Publication Data
A catalog record for this book is available from the U.S. Library of Congress.

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library.

Cover design by Vicki Kane

ISBN 13: 978-1-60807-521-8

© 2013 ARTECH HOUSE
685 Canton Street
Norwood, MA 02062

All rights reserved. Printed and bound in the United States of America. No part of this book 
may be reproduced or utilized in any form or by any means, electronic or mechanical, including 
photocopying, recording, or by any information storage and retrieval system, without permission 
in writing from the publisher.
 All terms mentioned in this book that are known to be trademarks or service marks have been 
appropriately capitalized. Artech House cannot attest to the accuracy of this information. Use of 
a term in this book should not be regarded as affecting the validity of any trademark or service 
mark.

10 9 8 7 6 5 4 3 2 1



 v 

 

Contents 

Preface  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . xv 

 

Chapter 1  Development of the Radar Equation  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 1 

 1.1 Radar Equation Fundamentals  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 1 

  1.1.1 Maximum Available Signal-to-Noise Ratio  .  .  .  . 2 

  1.1.2 Minimum Required Signal-to-Noise Ratio  .  .  .  . 4 

  1.1.3 Maximum Detection Range for Pulsed Radar  .  .  . 5 

 1.2 The Original Radar Equation  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   5 

 1.3 Blake’s Radar Equation for Pulsed Radar  .  .  .  .  .  .  .  .  .  . 6 

  1.3.1 Significance of Terms in Blake’s Equation  .  .  .  . 7 

  1.3.2 Methods of Solving for Range  .  .  .  .  .  .  .  .  .  .  . 9 

  1.3.3 Advantages of the Blake Chart  .  .  .  .  .  .  .  .  .  . 11 

  1.3.4 Blake’s Coherent Radar Equation  .  .  .  .  .  .  .  .   11 

  1.3.5 Blake’s Bistatic Range Equation  .  .  .  .  .  .  .  .  . 12 

 1.4 Other Forms of the Radar Equation  .  .  .  .  .  .  .  .  .  .  .  . 13 

  1.4.1 Hall’s Radar Equations  .  .  .  .  .  .  .  .  .  .  .  .  .  . 13 

  1.4.2 Barton’s Radar Equations  .  .  .  .  .  .  .  .  .  .  .  .  . 14 

 1.5 Avoiding Pitfalls in Range Calculation  .  .  .  .  .  .  .  .  .  .   16 

  1.5.1 System Noise Temperature Ts  .  .  .  .  .  .  .  .  .  .  . 16 

  1.5.2 Use of Signal-to-Noise Energy Ratio  .  .  .  .  .  .  . 17 

  1.5.3 Use of Average Power  .  .  .  .  .  .  .  .  .  .  .  .  .  . 18 

  1 5.4 Bandwidth Correction and Matching Factors  .  .  18 

  1.5.5 Detectability Factors for Arbitrary Targets  .  .  .  . 18 

  1.5.6 Pattern-Propagation Factor  .  .  .  .  .  .  .  .  .  .  .  . 19 

  1.5.7 Loss Factors  .  .  .  .  .  .  .  . .  .  .  .  .  .  .  .  .  .  .  . 19 

  1.5.8 Summary of Pitfalls in Range Calculation  .  .  .  . 20 

 1.6 Radar Equation for Modern Radar Systems  .  .  .  .  .  .  .  . 20 

  1.6.1 Factors Requiring Modifications to the Radar 

Equation  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 20 

  1.6.2 Equations Applicable to Modern Radars  .  .  .  .  . 23 

  1.6.3 Method of Calculating Detection Range  .  .  .  .  . 24 

  1.6.4 Vertical Coverage Charts  .  .  .  .  .  .  .  .  .  .  .  .  . 27 

  1.6.5 Required Probability of Detection  .  .  .  .  .  .  .  . 28 

 



vi Radar Equations for Modern Radar 

 

 1.7 Summary of Radar Equation Development  .  .  .  .  .  .  .  . 30 

 References  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 30 

Chapter 2 The Search Radar Equation  .  .  .  .  .  .  .  . .  .  .  .  .  .  .  .  .  .  .  . 33 

 2.1 Derivation of the Search Radar Equation  .  .  .  .  .  .  .  .  . 34 

 2.2 Search Sectors for Air Surveillance  .  .  .  .  .  .  .  .  .  .  .  . 37 

  2.2.1 Elevation Coverage in 2-D Surveillance  .  .  .  .  . 37 

  2.2.2 Fan-Beam Pattern for 2-D Air Surveillance  .  .  .  38 

  2.2.3 Cosecant-Squared Pattern for 2-D Surveillance  . 39 

  2.2.4 Coverage to Constant Altitude  .  .  .  .  .  .  .  .  .  . 40 

  2.2.5 Enhanced Upper Coverage for 2-D Surveillance   40 

  2.2.6 Reflector Antenna design for 2-D Surveillance 

Radar  .  .  .  . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 41 

  2.2.7 Array Antennas for 2-D Surveillance Radar  .  .  . 41 

  2.2.8 Example of Required Power-Aperture Product 

for 2-D Radar  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   42 

 2.3 Three-Dimensional Air Surveillance  .  .  .  .  .  .  .  .  .  .  .  43 

  2.3.1 Stacked-Beam 3-D Surveillance Radar  .  .  .  .  .   43 

  2.3.2 Scanning-beam 3-D Surveillance Radars  .  .  .  .   43 

  2.3.3 Search Losses for 3-D Surveillance Radar  .  .  .  . 44 

 2.4 Surveillance with Multifunction Array Radar  .  .  .  .  .  .  . 44 

  2.4.1 Example of MFAR Search Sectors  .  .  .  .  .  .  .  . 45 

  2.4.2 Advantages and Disadvantages of MFAR Search 46 

  2.4.3 Example of Search Radar Equation for MFAR     47 

 2.5 The Search Fence  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 48 

  2.5.1 Search Sector for the Fence  .  .  .  .  .  .  .  .  .  .  . 49 

  2.5.2 Example ICBM Fence  .  .  .  .  .  .  .  .  .  .  .  .  .  . 50 

 2.6 Search Losses  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 51 

  2.6.1 Reduction in Available Energy Ratio  .  .  .  .  .  . 51 

  2.6.2 Increase in Required Energy Ratio  .  .  .  .  .  .  .  . 52 

  2.6.3 Summary of Losses  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 52 

 References  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   . 54 

Chapter 3 Radar Equations for Clutter and Jamming  .  .  .  .  .  .  .  .  .  .  .  . 55 

 3.1 Signal-to-Interference Ratio  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 55 

 3.2 Clutter Effect on Detection Range  .  .  .  .  .  .  .  .  .  .  .  .  . 57 

  3.2.1 Range-Ambiguous Clutter  .  .  .  .  .  .  .  .  .  .  .  . 57 

  3.2.2 Types of Radar Waveforms  .  .  .  .  .  .  .  .  .  .  . 58 

  3.2.3 Clutter Detectability Factor  .  .  .  .  .  .  .  .  .  .  .  . 59 

  3.2.4 Effective Spectral Density of Clutter  .  .  .  .  .  .  . 61 

  3.2.5 Detection Range with Clutter  .  .  .  .  .  .  .  .  .  .  . 62 

 

 



 Contents vii 

 

 3.3 Detection in Surface Clutter  .  .  .  .   .  .  .  .  .  .  .  .  .  .  .  . 62 

  3.3.1 Clutter from a Flat Surface  .  .  .  .  .  .  .  .  .  .  .  . 62 

  3.3.2 Surface Clutter from the Spherical Earth  .  .  .  .  . 65 

  3.3.3 Surface Clutter Cross Section  .  .  .  .  .  .  .  .  .  . 66 

  3.3.4 Input Energy of Surface Clutter  .  .  .  .  .  .  .  .  . 68 

  3.3.5 Detection Range of Surface-Based CW and    

HPRF Radars  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 73 

  3.3.6 Summary of Detection in Surface Clutter  .  .  .  . 76 

 3.4 Detection in Volume Clutter  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 77 

  3.4.1 Geometry of Volume Clutter  .  .  .  .  .  .  .  .  .  .   77 

  3.4.2 Volume Clutter Cross Section  .  .  .  .  .  .  .  .  .  . 78 

  3.4.3 Volume Clutter Energy  .  .  .  .  .  .  .  .  .  .  .  .  .   79 

  3.4.4 Volume Clutter Detectability Factor  .  .  .  .  .  .  . 80 

  3.4.5 Detection Range in Volume Clutter and Noise  . 80 

  3.4.6 Volume Clutter in CW and PD Radars  .  .  .  .  . 82 

  3.4.7 Summary of Detection in Volume Clutter  .  .  .  . 87 

 3.5 Effects of Discrete Clutter  .  .    .  .  .  .  ..  .  .  .  .  .  .  .  .  . 88 

  3.5.1 Effect of False Alarms  .  .  .  .  .  .  .  .  .  .  .  .  .  . 89 

  3.5.2 Required Noise False-Alarm Probability  .  .  .  . 89 

  3.5.3 Requirements for Rejection of Discrete Clutter  . 90 

  3 5.4 Summary of Discrete Clutter Effects  .  .  .  .  .  . 91 

 3.6 Sidelobe Clutter  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 91 

  3.6.1 Surface Clutter in Sidelobes  .  .  .  .  .  .  .  .  .  .  . 91 

  3.6.2 Volume Clutter in Sidelobes  .  .  .  .  .  .  .  .  .  .  . 93 

 3.7 Detection in Noise Jamming  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 94 

  3.7.1 Objective and Methods of Noise Jamming  .  .  .  . 94 

  3.7.2 Radar Equations for Noise Jamming  .  .  .  .  .  .  . 96 

  3.7.3 Examples of Noise Jamming  .  .  .  .  .  .  .  .  .  .  . 98 

 3.8 Deceptive Jamming  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 101 

  3.8.1 Range Equations for Deceptive Jamming  .  .  .  . 102 

 3.9 Summary of Detection in Jamming    .  .  .  .  .  .  .  .  .  .  . 106 

  3.9.1 Range with Noise Jamming  .  .  .  .  .  .  .  .  .  .  . 106 

  3.9.2 Deceptive Jammer Equations  .  .  .  .  .  .  .  .  .  . 106 

 3.10 Detection in Combined Interference  .  .  .  .  .  .  .  .  .  .  . 106 

 References    .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  107 

Chapter 4 Detection Theory  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 109 

 4.1 Background  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 109 

 4.2 Steady-Target Detectability Factor  .  .  .  .  .  .  .  .  .  .  . 110 

  4.2.1 Exact Steady-Target Detection Probability  .  .  . 111 

  4.2.2 Threshold Level  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 111 

  4.2.3 Exact Steady-Target Detectability Factor  .  .  .  . 114 



viii Radar Equations for Modern Radar 

 

  4.2.4 Exact Single-Pulse, Steady-Target Detectability 

Factor  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 114 

  4.2.5 Approximations for Single-Pulse, Steady-     

Target Detectability Factor  .  .  .  .  .  .  .  .  .  . 115 

  4.2.6 Approximations for n-Pulse, Steady-Target   

Detectability Factor  .  .  .  .  .  .  .  .  .  .  .  .  .  . 116 

 4.3 Detectability Factors for Fluctuating Targets  .  .  .  .  . 118 

  4.3.1 Generalized Chi-Square Target Fluctuation 

Model  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 118 

  4.3.2 Detection of Signals with Chi-Square Statistics  119 

  4.3.3 Swerling Case 1  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 120 

  4.3.4 Swerling Case 2  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 124 

  4.3.5 Swerling Case 3  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 125 

  4.3.6 Swerling Case 4  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 127 

 4.4 Equations Based on Detector Loss  .  .  .  .  .  .  .  .  .  .  . 127 

  4.4.1 Coherent Detection  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 127 

  4.4.2 Envelope Detection and Detector Loss  .  .  .  .  . 129 

  4.4.3 Integration Loss  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 129 

  4.4.4 Integration Gain  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 131 

  4.4.5 Fluctuation Loss  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 132 

  4.4.6 Case 1 Detectability Factor  .  .  .  .  .  .  .  .  .  .  . 133 

  4.4.7 Detectability Factors for Other Fluctuating 

Targets  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 134 

 4.5 Diversity in Radar  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 134 

  4.5.1 Diversity Gain  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 134 

  4.5.2 Signal and Target Models with Diversity  .  .  .  . 135 

 4.6 Visibility Factor  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 138 

 4.7 Summary of Detection Theory  .  .  .  .  .  .  .  .  .  .  .  .  . 140 

 References  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 141 

Chapter 5 Beamshape Loss  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 143 

 5.1 Background  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 143 

  5.1.1 Definition of Beamshape Loss  .  .  .  .  .  .  .  .  . 143 

  5.1.2 Sampling in Angle Space  .  .  .  .  .  .  .  .  .  .  .  . 144 

  5.1.3 Literature on Beamshape Loss  .  .  .  .  .  .  .  .  . 145 

 5.2 Beamshape Loss with Dense Sampling  .  .  .  .  .  .  .  .  146 

  5.2.1 Simple Beamshape Loss Model  .  .  .  .  .  .  .  .  . 146 

  5.2.2 Antenna Patterns  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 147 

  5.2.3 Beamshape Loss for Different Patterns  .  .  .  .  . 148 

 5.3 Sparse Sampling in 1-D Scan  .  .  .  .  .  .  .  .  .  .  .  .  . 149 

  5.3.1 Method of Calculation for 1-D Scan  .  .  .  .  .  . 149 

  5.3.2 Steady Target Beamshape Loss for 1-D Scan  .   151 

 5.3.3 Case 1 Beamshape Loss for 1-D Scan  .  .  .  .  .  .  .  .  . 153 



 Contents ix 

 

 5.3.4 Case 2 Beamshape Loss for 1-D Scan  .  .  .  .  .  .  .  .  . 155 

 5.3.5 Beamshape Loss Used in Search Radar Equation for 

1-D Scan  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 158 

 5.4 Sparse Sampling in 2-D Raster Scan  .  .  .  .  .  .  .  .  .  . 160 

  5.4.1 Method of Calculation for 2-D Scan  .  .  .  .  .  . 162 

  5.4.2 Steady Target Beamshape Loss for 2-D Scan  . 162 

  5.4.3 Case 1 Beamshape Loss for 2-D Scan  .  .  .  .  . 163 

  5.4.4 Case 2 Beamshape Loss for 2-D Scan  .  .  .  .  . 165 

  5.4.5 Diversity Target Beamshape Loss for 2-D Scan  168 

  5.4.6 Beamshape Loss in  the Search Radar Equation  

for 2-D Raster Scan .  .  .  .  .  .  .  .  .  .  .  .  .  . 171 

 5.5 Sparse Sampling Using a Triangular Grid  .  .  .  .  .  .  . 174 

  5.5.1 Method of Calculation for Triangular Grid  .  .  . 174 

  5.5.2 Steady Target Beamshape Loss for Triangular 

Grid  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 175 

  5.5.3 Case 1 Beamshape Loss for Triangular Grid  .  . 175 

  5.5.4 Case 2 Beamshape Loss for Triangular Grid  .  . 176 

  5.5.5 Diversity Target Beamshape Loss for             

Triangular Grid  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 178 

  5.5.6 Beamshape Loss in Search Radar Equation for 

Triangular Grid  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 180 

 5.6 Summary of Beamshape Loss  .  .  .  .  .  .  .  .  .  .  .  .  . 181 

  5.6.1 Beamshape Loss for Dense Sampling  .  .  .  .  . 181 

  5.6.2 Beamshape Loss for Sparse Sampling  .  .  .  .  . 182 

  5.6.3 Processing Methods  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 184 

  5.6.4 Net Beamshape Loss for the Search Radar 

Equation  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 185 

  5.6.5 Beamshape Loss for Unequally Spaced 2-D  

Scan  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 186 

 References  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 186 

 Appendix 5A Analytical Approximations for Beamshape   

Loss  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 188 

  5A.1 1-D Beamshape Loss  .  .  .  .  .  .  .  .  .  .  .  .  .  . 188 

  5A.2 2-D Beamshape Loss with Rectangular Grid  .  . 189 

  5A.3 2-D Beamshape Loss with Triangular Grid  .  .  . 192 

Chapter 6 System Noise Temperature  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 197 

 6.1 Noise in the Radar Bands  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 197 

  6.1.1 Noise Spectral Density  .  .  .  .  .  .  .  .  .  .  .  .  . 197 

  6.1.2 Noise Statistics  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 198 

 6.2 Sources of Noise in Radar Reception  .  .  .  .  .  .  .  .  .  . 200 

 

 



x Radar Equations for Modern Radar 

 

 6.3 Antenna Noise Temperature  .  .  .  .  .  .  .  .  .  .  .  .  .  . 201 

  6.3.1 Sources of Antenna Noise Temperature  .  .  .  .  . 201 

  6.3.2 Sky Noise Temperature  .  .  .  .  .  .  .  .  .  .  .  .  . 204 

  6.3.3 Noise Temperature from the Surface  .  .  .  .  .  . 209 

  6.3.4 Noise Temperature from Antenna Ohmic Loss 211 

  6.3.5 Noise Temperature from Antenna Mismatch  .  . 212 

  6.3.6 Approximation for Antenna Noise Temperature  215 

 6.4 Receiving Line Temperature  .  .  .  .  .  .  .  .  .  .  .  .  .  . 217 

 6.5 Receiver Noise Temperature  .  .  .  .  .  .  .  .  .  .  .  .  .  . 217 

  6.5.1 Noise in Cascaded Receiver Stages  .  .  .  .  .  .  . 217 

  6.5.2 Input and Output Levels  .  .  .  .  .  .  .  .  .  .  .  .  . 219 

  6.5.3 Quantizing Noise  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 220 

 6.6 Summary of Receiving System Noise  .  .  .  .  .  .  .  .  . 221 

  6.6.1 Thermal Noise Dependence on Carrier  

   Frequency  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 221 

  6.6.2 Applicability of Blake’s Method  .  .  .  .  .  .  .  . 222 

  6.6.3 Refined Method for Modern Radar  .  .  .  .  .  .  . 222 

  6.6.4 Receiver and Quantization Noise Temperature 223 

 References  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 223 

Chapter 7 Atmospheric Effects  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 225 

 7.1 Tropospheric Refraction  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 225 

  7.1.1 Refractive Index of Air  .  .  .  .  .  .  .  .  .  .  .  .  . 226 

  7.1.2 Standard Atmosphere  .  .  .  .  .  .  .  .  .  .  .  .  .  . 227 

  7.1.3 Inclusion of Water Vapor  .  .  .  .  .  .  .  .  .  .  .  . 228 

  7.1.4 Vertical Profile of Refractivity  .  .  .  .  .  .  .  .  . 229 

  7.1.5 Ray Paths in the Troposphere  .  .  .  .  .  .  .  .  .  . 231 

 7.2 Attenuation in the Troposphere  .  .  .  .  .  .  .  .  .  .  .  . 232 

  7.2.1 Sea-Level Attenuation Coefficients of            

Atmospheric Gases  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 233 

  7.2.2 Variation of Attenuation Coefficients with     

Altitude  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 237 

  7.2.3 Attenuation Through the Troposphere  .  .  .  .  . 237 

  7.2.4 Attenuation to Range R  .  .  .  .  .  .  .  .  .  .  .  .  . 238 

  7.2.5 Attenuation for Dry and Moist Atmospheres  .  . 244 

 7.3 Attenuation from Precipitation  .  .  .  .  .  .  .  .  .  .  .  .  . 246 

  7.3.1 Rain Attenuation Coefficient at 293K  .  .  .  .  . 246 

  7.3.2 Temperature Dependence of Rain Attenuation  247 

  7.3.3 Rainfall Rate Statistics  .  .  .  .  .  .  .  .  .  .  .  .  . 249 

  7.3.4 Attenuation in Snow  .  .  .  .  .  .  .  .  .  .  .  .  .  . 251 

  7.3.5 Attenuation in Clouds  .  .  .  .  .  .  .  .  .  .  .  .  .  . 253 

  7.3.6 Weather Effects on System Noise Temperature  255 

 7.4 Tropospheric Lens Loss  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 255 



 Contents xi 

 

 7.5 Ionospheric Effects  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 257 

  7.5.1 Geometry of Ray in Ionosphere  .  .  .  .  .  .  .  .  . 258 

  7.5.2 Ionospheric Structure  .  .  .  .  .  .  .  .  .  .  .  .  .  . 258 

  7.5.3 Total Electron Count  .  .  .  .  .  .  .  .  .  .  .  .  .  . 260 

  7.5.4 Faraday Rotation  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 260 

  7.5.5 Dispersion Across Signal Spectrum  .  .  .  .  .  . 264 

 7.6 Summary of Atmospheric Effects  .  .  .  .  .  .  .  .  .  .  . 269 

 References  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 270 

Chapter 8 The Pattern-Propagation Factor  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 273 

 8.1 Equations for the F-Factor  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 274 

  8.1.1 Derivation of the F-Factor  .  .  .  .  .  .  .  .  .  .  . 274 

  8.1.2 Application of the F-Factor  .  .  .  .  .  .  .  .  .  .  . 276 

 8.2 Geometrical Models of the Ray Paths  .  .  .  .  .  .  .  .  . 277 

  8.2.1 Method 1: Flat-Earth Approximation for        

Distant Target  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 278 

  8.2.2 Method 2: Flat Earth Approximation with      

Target at Arbitrary Range  .  .  .  .  .  .  .  .  .  .  . 279 

  8.2.3 Method 3: First-Order Approximation for Spher-

ical Earth  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 280 

  8.2.4 Method 4: Approximation for Spherical Earth 

with Distant Target R  .  .  .  .  .  .  .  .  .  .  .  .  . 282 

  8.2.5 Method 5: Approximation for Spherical Earth 

with Target at Arbitrary Range  .  .  .  .  .  .  .  . 283 

  8.2.6  Method 6: Exact Expressions for Spherical 

Earth with Target at Arbitrary Range  .  .  .  .  . 285 

  8.2.7  Comparison of Approximate Methods  .  .  .  .  . 286 

 8.3 Reflection Coefficient  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 287 

  8.3.1 Fresnel Reflection Coefficient  .  .  .  .  .  .  .  .  . 288 

  8.3.2 Reflection from Rough Surfaces  .  .  .  .  .  .  . 292 

  8.3.3 Land Surfaces with Vegetation  .  .  .  .  .  .  .  .  . 295 

  8.3.4 The Divergence Factor  .  .  .  .  .  .  .  .  .  .  .  .  . 295 

 8.4 Diffraction  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 296 

  8.4.1 Smooth-Sphere Diffraction  .  .  .  .  .  .  .  .  .  .  . 296 

  8.4.2 Knife-Edge Diffraction  .  .  .  .  .  .  .  .  .  .  .  .  . 299 

 8.5 The Interference Region  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 302 

 8.6 The Intermediate Region  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 303 

  8.6.1 F-Factor as a Function of Range  .  .  .  .  .  .  .  . 303 

  8.6.2 F-Factor as a Function of Altitude  .  .  .  .  .  .  . 305 

  8.6.3 Vertical-Plane Coverage Charts  .  .  .  .  .  .  .  .  . 306 

 8.7 Summary of Propagation Factors  .  .  .  .  .  .  .  .  .  .  . 309 

 References  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 310 



xii Radar Equations for Modern Radar 

 

Chapter 9 Clutter and Signal Processing  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 311 

 9.1 Modes of Surface Clutter  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 311 

  9.1.1 Clutter Cross Section and Reflectivity  .  .  .  .  . 311 

  9.1.2 Surface Clutter Pattern-Propagation Factor  .  .  . 313 

  9.1.3 Spectral Properties of Surface Clutter  .  .  .  .  .  . 318 

  9.1.4 Amplitude Distributions of Surface Clutter  .  .  . 321 

 9.2 Models of Sea Clutter  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 323 

  9.2.1 Physical Properties of the Sea Surface  .  .  .  .  . 323 

  9.2.2 Reflectivity of Sea Clutter  .  .  .  .  .  .  .  .  .  .  .  . 324 

  9.2.3 Power Spectrum of Sea Clutter  .  .  .  .  .  .  .  .  . 326 

  9.2.4 Amplitude Distribution of Sea Clutter  .  .  .  .  . 327 

 9.3 Models of Land Clutter  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 327 

  9.3.1 Reflectivity of Land Clutter  .  .  .  .  .  .  .  .  .  .  . 329 

  9.3.2 Power Spectrum of Land Clutter  .  .  .  .  .  .  .  . 331 

  9.3.3 Amplitude Distribution of Land Clutter  .  .  .  .  . 332 

 9.4 Discrete Clutter  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 333 

  9.4.1 Discrete Land Features  .  .  .  .  .  .  .  .  .  .  .  .  . 333 

  9.4.2 Birds and Insects  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 333 

  9.4.3 Land Vehicles  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 334 

  9.4.4 Wind Turbines  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 335 

 9.5 Models of Volume Clutter  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 335 

  9.5.1 Volume Clutter Cross Section and Reflectivity  336 

  9.5.2 Volume Clutter Pattern-Propagation Factor  .  .  . 337 

  9.5.3 Spectral Properties of Volume Clutter  .  .  .  .  . 338 

  9.5.4 Amplitude Distribution of Volume Clutter  .  .  . 340 

  9.5.5 Precipitation Clutter Models  .  .  .  .  .  .  .  .  .  . 340 

  9.5.6 Chaff Models  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 343 

 9.6 Clutter Improvement Factor  .  .  .  .  .  .  .  .  .  .  .  .  .  . 344 

  9.6.1 Coherent MTI Improvement Factors  .  .  .  .  .  . 345 

  9.6.2 Noncoherent MTI Improvement Factors  .  .  .  . 347 

  9.6.3 Other MTI Considerations  .  .  .  .  .  .  .  .  .  .  . 347 

  9.6.4 Pulsed Doppler Processing  .  .  .  .  .  .  .  .  .  .  . 348 

  9.6.5 Clutter Maps  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 352 

 9.7 Summary of Clutter and Signal Processing  .  .  .  .  .  . 352 

 References  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 353 

Chapter 10 Loss Factors in the Radar Equation  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 357 

 10.1 Reduction in Received Signal Energy  .  .  .  .  .  .  .  .  . 358 

  10.1.1 Terms Specified in the Radar Equation  .  .  .  . 358 

  10.1.2 Components of Range-Dependent Response 

Factor Frdr  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 361 

  10.1.3 Losses Included in System Noise Temperature  364 

 



 Contents xiii 

 

  10.1.4 Losses in Search Radar Equation  .  .  .  .  .  .  . 364 

  10.1.5 Losses Included in Antenna Gain  .  .  .  .  .  .  . 367 

 10.2 Increases in Required Signal Energy  .  .  .  .  .  .  .  .  .  . 370 

  10.2.1 Statistical Losses  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 370 

  10.2.2 Losses in Basic Detectability Factor  .  .  .  .  . 374 

  10.2.3 Matching and Bandwidth Losses  .  .  .  .  .  .  . 375 

  10.2.4 Beamshape Loss Lp  .  .  .  .  .  .  .  .  .  .  .  .  .  . 378 

  10.2.5 Signal Processing Losses  .  .  .  .  .  .  .  .  .  .  . 379 

  10.2.6 Losses in Clutter Detectability Factor  .  .  .  . 388 

 10.3 Losses in Visual Detection  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 394 

  10.3.1 Losses in the Visibility Factor  .  .  .  .  .  .  .  . 394 

  10.3.2 Collapsing Loss on the Display  .  .  .  .  .  .  .  . 394 

  10.3.3 Bandwidth Correction Factor Cb  .  .  .  .  .  .  . 395 

  10.3.4 Operator Loss Lo  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 395 

 10.4 Summary of Loss Factors  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 396 

 References  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 397 

List of Symbols  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 399 

Appendix  Analysis Tools on DVD  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 411 

About the Author  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 419 

Index  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  421 

 

 

 

 

 

 





xv 

Preface 

 

The starting point for analysis of radar performance is the radar range equation, 

which gives the maximum range at which a specified signal-to-noise ratio, re-

quired for successful detection of a target, can be obtained. The physical princi-

ples behind what is usually called simply the radar equation have been known 

since the work performed during World War II and reported in the unclassified 

post-war paper by Norton and Omberg.
1
 Subsequent books on radar systems, 

starting with Ridenour’s Radar System Engineering in 1947, have included chap-

ters in which the equation is derived and expressed in different ways, with terms 

characterizing the radar, the target, the detection requirements, and the environ-

ment in which the radar operates. The complexity of environmental effects leads 

most of these discussions to presentation of an equation giving the range in an 

environment where thermal noise is the only source of interference competing 

with the target echo, and where the path between the radar and the target is char-

acterized by a range-dependent atmospheric attenuation factor. 

The most thorough discussion of the radar equation appeared in Blake’s Ra-

dar Range-Performance Analysis, based on work by that author at the Naval Re-

search Laboratory between 1940 and 1972, and published in 1980. That book is of 

lasting value and remains in print after more than thirty years. The reader is urged 

to obtain and read it.  

The objective of this new volume is to extend Blake’s classic work to ensure 

applicability of radar equations to design and analysis of modern radars, to identi-

                                                           
1  See the list of references at the end of Chapter 1. 
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fy what information on the radar and its environment is needed to predict detec-

tion range, and to provide equations and data to improve the accuracy of range 

calculations. The chapter outline follows generally that of Blake’s book so that the 

reader can better appreciate his contributions while identifying extensions that are 

useful in application to modern radars. Special attention is directed to propagation 

effects, methods of range calculation in environments that include clutter and 

jamming in addition to thermal noise, and to establishing the many loss factors 

that reduce radar performance.  

There are two conflicting approaches to deriving a radar equation. Following 

the Naval Research Laboratory work of World War II and Blake’s elegant exten-

sions, we adopt here the first approach. In addition to the standard geometrical 

relationships for a wave spreading as it moves through space, it uses the concept 

of the matched filter, in which the ratio of input signal energy to noise spectral 

density, during the observation time on the target, is used to calculate the maxi-

mum possible output signal-to-noise (power) ratio SNR that would be obtained in 

an ideal (lossless) system. The input signal energy is proportional to the average 

power of the transmission, regardless of its waveform. A succession of loss factors 

is applied to find the output SNR for the practical radar being considered, as a 

function of the target range. The detection range is then the range at which that 

SNR meets the requirement for a stated probability of detection, given a required 

false-alarm probability. That requirement is identified as the detectability factor, 

and it depends on details of the practical signal processing method used in the 

radar.  

Following the first approach, the efficiency of the radar can be compared to 

that of an “ideal” system in terms of the total of losses that have been introduced 

the practical implementation. Inspection of the loss budget may suggest improve-

ments in design or modeling, but performance beyond that of the ideal system is 

clearly ruled out. 

The alternative approach calculates the output SNR of a single pulse at the re-

ceiver output as a power ratio, dependent on such parameters as receiver band-

width, peak power of the transmission, and many other factors in design of the 

practical radar. In most cases that SNR is inadequate for reliable detection, and a 

succession of processing gains is applied to bring it to the required level at some 

calculated detection range. That evaluation, if correctly performed, would give the 

same range as the first approach. 

The hazard in the second approach is that no theoretical limit to performance 

is established as a check on how much processing gain is theoretically available. 

The receiver bandwidth and processing gains in a modern radar, using complex 

pulse-compression waveforms, mixtures of coherent and noncoherent integration, 

and digital processing, are difficult to define. Too many cases have occurred in 

which the calculated performance exceeds that available from a matched-filter 

system, as cascaded gains are applied incorrectly to the analysis. 
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Blake’s work was motivated by the requirement that Naval Research Labora-

tory perform accurate evaluations of competing contractor proposals for new na-

val radar designs. It provided a means of comparing systems when detailed infor-

mation was omitted or described in a way that protected “proprietary technology.” 

The Blake Chart, discussed here in Chapter 1, became the gold standard for clari-

fying issues of radar range performance. Open publications of the work allowed 

radar professionals to obtain reproducible results on a wide variety of radar system 

designs. 

What is surprising is that subsequently published radar texts fail to take ad-

vantage of this work. Blake contributed the chapter on the radar equation to the 

1970 and 1990 editions of Skolnik’s Radar Handbook, but to this day other texts 

continue to use radar equations in which a “receiver bandwidth B” appears in the 

denominator of the equation to give receiver “noise power” that is proportional to 

that bandwidth. The radar novice might conclude that as B  0 the SNR  , 

although disabling the receiver does not improve its detection performance. 

Transmission of a pulse-compression waveform having B = 100 MHz yields a 

noise bandwidth Bn = 100 MHz for the matched pulse-compression filter, accord-

ing to the accepted definition of that term given in Chapter 6 of this book. A large 

“pulse-compression gain” must be included somewhere in the equation if that 

bandwidth is used in the denominator. Similar confusion applies when digital 

Doppler filtering is used with a coherent pulse train, or when multiple pulses are 

integrated after envelope detection. 

Experience shows that a radar range equation containing receiver bandwidth 

B has a high probability of causing serious errors, which can be avoided using 

Blake’s approach.  

Another source of error is using noise figure F and a standard temperature 

T0 = 290K in the denominator of the radar equation. When the product N = kT0FB 

is used for noise power, the result is pessimistic for radars that look into a cold 

sky. An alternative form appearing in a least one recent text substitutes the expres-

sion N = kT0(F  1)B, which predicts that N  0 as F  1. This leads to optimis-

tic results for any radar operating in an environment with temperature above 

273 Celsius. Blake addresses this problem in a way that achieves accurate re-

sults for any environment, as discussed here in Chapter 6. 

Blake’s inclusion of the pattern-propagation factors Ft and Fr in the radar 

equation addresses a host of problems that complicate range calculation. Omission 

of that factor from presentation of the equation, even when propagation effects are 

discussed elsewhere in a text, invites error. 

Given that Blake uses the approach in his papers and textbook that avoids 

these errors, what justifies a new book on the subject?  

First, equations for detection in environments in which clutter and jamming 

add to thermal noise are discussed only briefly by Blake. More detailed treatment 

is needed, especially in the case of clutter, which cannot be modeled by a Gaussi-
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an probability density function and a uniform spectral density. This subject is cov-

ered here in Chapters 3 and 9. 

Second, use of diversity (in time, frequency, space, or polarization) is an im-

portant method of minimizing the energy required for detection probabilities 

greater than 50%. This subject is explored in detail in Chapter 4. That chapter 

presents methods not discussed by Blake or the collaborator in his text by which 

the detectability factor can be calculated on personal computers for different radar 

and target models that provide measures of diversity to reduce the detectability 

factor. 

Third, new radar technology such as active phased arrays presents problems 

in analysis that were not anticipated in Blake’s work. For example, the multifunc-

tion array radar (MFAR) must often economize on scan time by minimizing over-

lap in beam positions. The optimization of beam spacing during scanning of a 

volume requires a compromise between scan time and total energy expended  to 

achieve the required detection probability. This subject is explored in Chapter 5. 

Fourth, much of Blake’s material involves a mixture of metric and “U.S. cus-

tomary units” such as nautical miles and kilofeet. We have found that consistent 

use of metric units in radar performance analysis avoids introducing errors in con-

versions to and from other systems. When presenting results to U.S. Navy or Air 

Force personnel or others unaccustomed to using metric units, a simple conversion 

after completion of the analysis provides the modified data with minimal oppor-

tunity for error.  

Lastly, this writer hopes that Blake’s legacy to the profession will not be 

compromised by calling attention to an inconsistency in use of his bandwidth cor-

rection factor Cb as a factor multiplying the detectability factor in the denominator 

of the radar equation (see Section 1.3). That factor, as defined and plotted by 

Blake, is unity for an optimum product of bandwidth and pulsewidth Bn  1.2, 

and hence is applicable only to multiply the visibility factor of a cathode-ray-tube 

display. If it is applied to multiply the detectability factor for electronic detection, 

the result is optimistic by  2 dB, an error which is inconsistent with the accuracy 

desired and available from the rest of Blake’s approach. 

What accuracy should be expected of range calculations using the radar equa-

tion? Blake discusses this issue at the end of his chapter on pulse-radar detection-

range computation without arriving at numerical estimates. Marcum, in his classic 

work on detection theory,
2
 warned of pitfalls in range calculation: 

The number of pitfalls that may be encountered in the use of the [radar] equation are almost 

without limit, and many of these difficulties have been recognized in the past 

He goes on to mention three of the most troublesome as evaluation of the tar-

get cross section, the minimum discernible signal power, and the statistical nature 

of detection range as a function of detection probability. To his list we must add 

                                                           
2  See reference [4] of Chapter 4. 
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the uncertainty in target location relative to points of maximum radar system re-

sponse in four-dimensional radar space, and the presence of other than thermal 

noise in the environment. 

Even in cases where only thermal noise is present, the accuracy can seldom 

be better than about three decibels in required and achieved energy ratio (equiva-

lent to about 20% in free-space range). In a clutter environment, reduced accuracy 

is inevitable, and the resulting error in range, even for 3-dB error in signal-to-

clutter ratio, may exceed 20%. 

It remains useful to perform calculations to precisions of a fraction of one 

decibel. This permits alternative designs to be compared with greater precision, 

and loss budgets to be evaluated as a guide to improved designs. With careful 

modeling, it is unnecessary to add several decibels of error to that caused by un-

certainties in the environment or the performance of radar operating and mainte-

nance personnel. When radar performance in field tests fails to measure up to 

specifications and predictions, it is common to attribute the difference to a “field 

service loss” or “operator loss” of several decibels, when in fact the performance 

was never designed into the radar system.  

This book is intended to provide methods by which the errors in predicting 

radar range performance can be minimized, even though they cannot be avoided 

completely. 

The author would like to express his thanks to Dr. Paul Hamilton for his re-

view of the manuscript during its generation, and to many colleagues, especially 

Harold Ward and William Shrader, whose advice over many years has been essen-

tial to understanding the factors that affect radar detection range. Lamont Blake 

was one of those colleagues, and his insights will continue to guide the future ef-

forts of the radar community. 



1 

CHAPTER 1 

Development of the Radar Equation 

The radar range equation was developed during World War II to permit analysis 

of radar system performance and to guide radar developers in choosing among the 

limited design options available in that era. The earliest literature on the subject 

was subject to military security restrictions but was published after the end of the 

war and has been widely distributed. 

The basic approach to predicting radar detection range has remained con-

sistent with the early work, summarized in the first published paper on the radar 

equation: the 1947 paper by Norton and Omberg of the U.S. Naval Research La-

boratory [1, 2]. We will refer to that equation as the original radar equation. In 

this chapter we review the steps by which the radar equation was developed, and 

discuss its evolution to forms that can be applied to analysis and design of modern 

radar systems. To avoid confusion from varied symbols used by different authors, 

we replace those used in the referenced works with a consistent system of sym-

bols, defined as they occur and listed in Appendix A at the end of this book. This 

permits direct comparison of the equations and their limitations and applicability 

to current problems. 

1.1 RADAR EQUATION FUNDAMENTALS  

The objective of the radar equation is to calculate the maximum range Rm at which 

the desired detection performance can be achieved for a specified set of radar, 

target, and environmental parameters. The radar equation discussed in this chapter 

is limited to an environment in which thermal noise is the only source of interfer-

ence against which a target echo signal must successfully compete to be detected. 

Equations for other environments are developed in Chapter 3. 



2 Radar Equations for Modern Radar 

The radar range equation is derived in three steps: 

1. Express the maximum signal-to-noise ratio that is available with giv-

en parameters, as a function of range; 

2. Express the minimum signal-to-noise ratio that is required to meet 

detection requirements; 

3. Combine these expressions to solve for the maximum range at which 

the requirement is met for the specified radar. 

1.1.1 Maximum Available Signal-to-Noise Ratio 

It was determined in classified work by North during World War II [3], subse-

quently reprinted in Proceedings of the IEEE, that the maximum possible signal-

to-noise power ratio (S/N)max is obtained when the receiving system uses the 

matched filter for the transmitted waveform. This maximum ratio is equal to the 

energy ratio E/N0 of the waveform,1 where E is the energy of the echo signal and 

N0 is the spectral density of competing thermal noise. The expression to be devel-

oped in step 1 gives E/N0 for the specified system parameters. In [1], E/N0 is de-

fined as the available energy ratio of a single pulse, referred to the output port of 

the receiving antenna. That reference point is used throughout this book. 

The energy density Ep of the outgoing pulse, measured at an arbitrary range R 

from an isotropic transmitting antenna, is 

  2

2
   J/m

4

t

p

E
E

R



 (1.1) 

where Et (joules) is the energy of the transmitted pulse and 4R2 is the area of a 

sphere of radius R centered on the radar. For an assumed rectangular pulse of 

width  (s) and peak power Pt (W), Et = Pt (J). For a transmitting antenna with 

gain Gt, the energy density on the axis of the beam is increased by that gain: 
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After reflection from a target having a radar cross section  (m2), the energy den-

sity Ea of the echo incident on the radar receiving antenna is 
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Equation (1.3) follows from the definition of radar cross section [4]. 

                                                           
1  Note that energy ratio in this book is E/N0, not R = 2E/N0 used in some texts. 
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The radar receiving antenna with effective aperture Ar captures energy E giv-

en by 

 

 
 2

2
   J

4

t t r

a r

P G A
E E A

R

 
 


 (1.4) 

Using the expression for receiving antenna gain 
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where  is wavelength, we obtain the desired equation for the maximum available 

signal energy at the output port of a pulsed radar receiving antenna: 
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So far we have considered an ideal case in which the transmitter delivers its 

output directly to the antenna, and where there are no losses along the transmitter-

target-receiver path that reduce the received signal energy. To allow for such ra-

dio-frequency (RF) losses, a factor L1 can be included in the denominator, yield-

ing 
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The derivation of (1.7) follows the procedure presented in today’s radar texts, 

but differs from many of these in expressing the energy of the transmitted and 

received pulses rather than power. 

To find the available energy ratio, the noise spectral density N0 (W/Hz), re-

ferred to a receiver connected directly to the antenna output port, is expressed as 

  0    W/Hz or JsN kT  (1.8) 

where 

k = 1.38  1023 J/K is Boltzmann’s constant; 

Ts = system noise temperature in kelvins (K) (see Chapter 6). 

Combining (1.7) and (1.8), we obtain the maximum available signal-to-noise 

power ratio: 
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1.1.2 Minimum Required Signal-to-Noise Ratio 

The second expression used in derivation of the radar equation gives the energy 

ratio required to obtain the specified detection performance. It is assumed in [1] 

that detection is performed by a human operator observing a cathode-ray-tube 

display that presents n successive echo pulses: 

   min

0

E
V n

N
  (1.10) 

where Emin is the minimum energy of each received pulse that renders the n-pulse 

group visible on the display under optimum viewing conditions. This is consistent 

with the current definition [4]: 

visibility factor (pulsed radar) The ratio of single-pulse signal energy to noise power per 

unit bandwidth that provides stated probabilities of detection and false alarm on a display, 

measured in the intermediate-frequency portion of the receiver under conditions of optimum 

bandwidth and viewing environment. 

The minimum required energy is thus 

      min 0    JsE N V n kT V n   (1.11) 

The number of pulses n is given by the product of the pulse repetition fre-

quency fr and the observation time to, which is the lesser of the dwell time of the 

radar beam on the target or the time constant of the display and human observer: 

 r on f t  (1.12) 

Thus the required energy ratio can be reduced by integration of successive pulses 

obtained with broad beams or slow scanning of the radar across the target posi-

tion. 

Experimental values for V(n) with an optimum A-scope2 were reported in [5]. 

These and similar results for the PPI displays3 are presented in [6–12]. For radar 

systems in which electronic detection replaces visual detection, the visibility fac-

tor is replaced by a detectability factor D(n), defined [4]: 

                                                           
2 The A-scope displays receiver output voltage vs. range. 
3  The PPI displays receiver voltage as intensity on a polar plot of range vs. azimuth angle. 
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In pulsed radar, the ratio of single-pulse signal energy to noise power per unit bandwidth that 

provides stated probability of detection for a given false alarm, probability, measured in the 

intermediate-frequency amplifier bandwidth and using an intermediate-frequency filter 

matched to the single pulse and followed by optimum video integration. 

Subscripts are sometimes added to V and D to denote the target model and the 

detection probability to which they apply (e.g., V0(50), denoting the energy ratio 

required for 50% probability of detection on a steady (Case 0) target [6–12]). In 

general, V exceeds D as a result of the lower efficiency of the visual detection 

process, as discussed in Section 4.6. 

1.1.3 Maximum Detection Range for Pulsed Radar 

Setting the available E/N0 in (1.9) equal to the required value V or D, the equation 

for maximum range of a pulsed radar is obtained: 

 For visual detection: 
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 For electronic detection: 
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These equations are only the starting point for prediction of radar detection range. 

They give the range along the axis of a common transmitting-receiving antenna 

beam at which the received energy ratio is adequate under free-space conditions, 

when using an optimum filter (for visual detection) or a matched filter (for elec-

tronic detection). 

1.2 The Original Radar Equation 

The range equation derived by Norton and Omberg [1] is expressed by (1.13), 

with the following understandings: 

 Noise Spectral Density. The noise power spectral density calculated as 

  0   W/HznN kTF  (1.15) 

for a system at a “room temperature” T = 300K with receiver noise figure Fn.  

 Visibility Factor. The visibility factor is derived for a pulse “barely visible” 

on an A-scope display [5], and is defined to include the effects of 
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nonoptimum bandwidth rather than using separate values of an ideal visibility 

factor, as defined in [4], and a bandwidth correction factor, introduced in [6–

12]. 

 Propagation Effects. The authors in [1] discuss the effects of tropospheric ab-

sorption and refraction and reflections from the surface underlying the radar-

target path, but these are not included as terms in the original radar equation. 

 RF Losses. Transmitting and receiving line losses Lt and Lr are included in a 

final equation in [1] based on (1.13). That form of the equation, complicated 

by several numerical conversion constants, is no longer useful. 

A numerical conversion factor is introduced in [1] to present the resulting 

range in miles. Other numerical factors are introduced by substitution for the con-

stants 4, k, and T, and by inclusion of approximations for visibility factor and 

target cross section, such that the final expression is encumbered by a numerical 

constant that obscures the basic relationships used in derivation. This was done to 

combine as many factors as possible into a single numerical value in an era when 

calculations were made by slide rule or electromechanical calculators. That is no 

longer necessary or desirable. In order to expose the relationships and permit 

comparison of different forms of the radar equation, we retain in subsequent dis-

cussion the terms used in derivation, without conversion factors or introduction of 

numerical values. 

In spite of these limitations, the original radar equation, formulated during 

World War II, remains relevant today in that it uses the signal-to-noise energy 

ratio to capture the fundamental relationships between detection range for a free-

space path and parameters of the radar and target. The insight of the originators of 

this equation, in relying on North’s matched-filter relationship and using energy 

ratios as the criterion for successful detection, deserves the recognition accorded 

by Blake and overlooked in  much of the current literature. 

1.3 BLAKE’S RADAR EQUATION FOR PULSED RADAR 

Lamont V. Blake at the Naval Research Laboratory [6–13] builds on the World 

War II work, while introducing more precise definitions of terms in the radar 

equation. His basic radar range equation for pulsed radar takes the form [12, p. 19, 

Eq. (1.34)]: 
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 (1.16) 

The numerator of (1.16) has dimension J-m4, when the terms are expressed in 

fundamental units. The new terms added to (1.14) are: 
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Ft = pattern-propagation factor for the transmitting path; 

Fr = pattern-propagation factor for the receiving path (see Chapter 8). 

The denominator of (1.16) has dimension J, where the new terms are: 

Ts = system input temperature in kelvins (see Chapter 6); 

D(n) = detectability factor (defined in Section 1.1.2; see Chapter 4); 

Cb = bandwidth correction factor (see Section 10.2.3); 

L = L1L2 = system loss factor. 

The system loss L is expressed by the product of two components: L1, the RF loss 

in (1.7) that reduces the available energy ratio, and L2, the signal processing loss 

that increases the required energy ratio relative to D(n). 

1.3.1 Significance of Terms in Blake’s Equation 

The terms in Blake’s radar equation are defined to provide accurate results for 

pulsed radars with or without intrapulse modulation, using noncoherent integra-

tion, and operating in the natural environment. Attention should be paid to follow-

ing factors.  

 Transmitter Energy. The use of pulse energy Pt allows (1.16) to be applied 

directly to radars using pulse compression waveforms for which the time-

bandwidth product B >> 1, where B is the width of the transmitted pulse 

spectrum. This contrasts with equations in which Pt is used without  in the 

numerator, and a competing noise power N0B appears in the denominator. 

Such equations are inapplicable to transmissions with intrapulse modulation.  

 Pattern-Propagation Factors. Blake introduces directly into the radar equa-

tion the factors Ft and Fr that account for the elevation pattern of the antenna 

and the effects of surface reflections, both functions of elevation angle and 

essentially invariant with range. The pattern-propagation factor is defined 

[14, p. 35] as 

the ratio of the amplitude of the electric field at a given point under specified conditions to 

the amplitude of the electric field under free-space conditions with the beam of the trans-

mitter directed toward the point in question. 

 As used in (1.16), this factor is understood to exclude the effects of the azi-

muth antenna pattern and attenuation of the medium, both of which Blake in-

cludes as components of L. The F factors include the antenna gains at the tar-

get elevation relative to those on the axes at which Gt and Gr are defined, the 

contribution of surface reflections to the radiated and received fields, and 

modification of the fields by diffraction on low-elevation paths. For array an-

tennas, they include also the reduced gain from off-broadside operation, cal-

culation of which is discussed in Chapter 10.  
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 Noise Temperature. Blake introduces the system noise temperature Ts to ex-

press the effects of both internal and external noise sources, replacing the 

product TFn in (1.15). This change is especially important when the receiver 

noise figure is small and the antenna beam points into the cold sky. It should 

be noted that Ts is referred to the output terminal of the receiving antenna, 

and includes the effects of thermal noise output from the antenna and receiv-

ing line loss Lr between the antenna and the receiver, as well as that from the 

receiver itself. 

 Use of Energy Ratios. Blake continues the use of energy ratios for the availa-

ble and required signals, as in the original radar equation.  

 Detectability Factor. The detection process can be either electronic or visual, 

but any departure from the ideal process that is assumed in deriving the de-

tectability factor requires inclusion of an appropriate component in the loss 

factor L2.  

 Bandwidth Factor. The factor Cb, is given by [12, Eq. (8.14a)] as 
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where Bn is the noise bandwidth of the receiver. This factor is equal to unity 

for an “optimum” receiver noise bandwidth Bn = 1.2/. Its origin and use are 

discussed in Section 10.3.3, and the error arising from use of Cb in radars with 

electronic detection is discussed in Section 1.5.4. 

 Loss Factor. The system loss factor L, appearing in (1.16), is the product of 

the following factors:  

Lt, transmission line loss in the path connecting the transmitter output to the 

antenna terminal at which Gt is measured;  

L, atmospheric absorption loss for the two-way path;  

Lp, beamshape loss4 for a scanning radar [13]; 

Lx, miscellaneous signal processing loss that represents the product of other 

receiving and signal processing losses not specifically included in Ts, Cb, Lp, or L.  

Of these losses, Lt and L contribute to the RF loss L1 that decreases available 

on-axis energy ratio, while Lp and Lx contribute to the loss L2 that increases re-

quired energy ratio. The treatment of loss factors and the fact that some are func-

tions of the required detection probability are discussed in detail in Chapters 4 and 

10. 

                                                           
4  Blake refers to this as “antenna pattern loss,” but beamshape loss is the original and currently ac-

cepted term. This loss is discussed in detail in Chapter 5. 
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1.3.2 Methods of Solving for Range 

Because of the complicated range-dependence of the terms Ft, Fr, and L, there is 

no closed-form solution for Rm using (1.16). Blake discusses iterative and graph-

ical methods for solution [12, pp. 379–388]. One simple method is embedded in 

the “Pulse-Radar Range-Calculation Worksheet,” commonly known as the Blake 

chart, shown in Figure 1.1. This chart is used to solve the equation by addition 

and subtraction of decibel values, easily performed with pocket calculators. 

The antenna height above the surrounding surface and the target elevation an-

gle are entered in the Blake chart for record, because the result is only valid for 

those specific conditions. The user then enters five parameters in part (1), using 

them to calculate the system noise temperature Ts. The terms listed as coming 

from figures and tables are discussed in Chapter 6, where the applicable figures 

are presented along with equations to replace conversion tables. Remaining range 

factors are entered in part (2) of the chart, converted to decibel form in part (3), 

and summed to find the decibel value 40logR0(nmi). The free-space range R0 in 

nautical miles is found as the antilogarithm. The pattern-propagation factor F is 

calculated separately (see Chapter 8), and multiplies R0 to obtain an initial range 

estimate R. That estimate is input to a two-stage iteration to correct for atmos-

pheric attenuation. Additional iteration steps may be required when the attenua-

tion coefficient of the atmosphere at the target is large, as in some millimeter-

wave radar cases or in microwave radar when precipitation is present. 

A complication in the Blake chart is the use of mixed units for entry of range 

factors. These include the radar frequency fMHz = (c/)/106 rather than  that ap-

pears in the radar equation. The resulting range-equation constant collects the sev-

eral conversion factors, constants, and their dimensions as: 

     
    

 
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10log
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      10log 1.292 K nmi W s m

      4.45 dB ref  K nmi W s m





  
 
   
  

    
 

    
 

 

Note that a median radar cross section 50 and a corresponding visibility fac-

tor V0(50) are entered into the Blake chart, to arrive at the range R50 for a probabil-

ity of detection Pd = 50%. The radar cross section normally specified is its average 

value, which for a fluctuating target characterized as Swerling Case 1 (see Section 

4.3.3) is 1.5 dB greater than the median.  
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Figure 1.1  Blake’s Pulse-Radar Range-Calculation Worksheet [8]. The referenced figures are repro-

duced in Chapters 4, 6 and 7, and the referenced tables for conversions between decibels and ratios 

are now replaced by digital calculation. 
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Plots of V0(50) and corresponding D0(50) for electronic detection are presented 

in [6–8], but calculations for values of Pd other than 50% are often needed. 

Blake’s subsequent presentations in [9–12] provide plots of D for different values 

of Pd and for several target models. These plots require use of the average (rather 

than the median) value of  in (1.16) and in the Blake chart. 

1.3.3 Advantages of the Blake Chart 

A major advantage of the Blake chart is that it records the input values on which 

the range calculation is based, along with several intermediate results. In the ab-

sence of this discipline, essential data may be left unrecorded and unavailable for 

later reference. When engineering calculators or digital computer methods are 

used to replace Blake’s conversion tables and manual intermediate steps, the pro-

cess is rapid and accurate. The exact form of the chart has undergone successive 

modifications from Blake’s original in [6] to its final form in [12], but the basic 

approach remains. A modification of the chart that maintains entries in fundamen-

tal units is described in Section 1.4.2.  

The Blake chart formalizes the iteration that solves for the effects of range-

dependent attenuation. It has been widely accepted as a standard range-calculation 

method, although parameters would preferably be entered in fundamental units. 

Procedures for conversions between decibels and ratios no longer require recourse 

to associated tables because they are performed readily on pocket calculators or 

computers. Preservation of the basic format of the chart remains an important el-

ement in providing traceability of results. There are all too many opportunities for 

error when the entire process is reduced to entry of parameters into a computer 

program and reading an output representing detection range, without recording 

and inspection of inputs and intermediate results. 

1.3.4 Blake’s Coherent Radar Equation 

Blake extends (1.16) to coherent radars [12, p. 20, Eq. (1.35)]: 

 Coherent radar: 
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 (1.18) 

Here the energy Pavtf  of the observed waveform replaces the single-pulse transmit-

ted energy Pt = Pavtr, where Pav is average power, tf  is the coherent processing 

interval (CPI), and tr is the pulse repetition interval (PRI). The required energy 

ratio D(1) for detection is the value for the single output of the coherent integrator. 

The result is a general radar equation (similar to that of Hall, discussed in Section 
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1.4.1), applicable to continuous-wave (CW) and pulsed Doppler radars as well as 

to noncoherent pulsed radars. 

The application of the Blake chart to coherent radar requires merely the re-

placement of Pt with average power Pav in kW, and  with tf in s. If those units 

are inconvenient for CW radars, they may be replaced by watts and milliseconds 

without changing the range-equation constant.  

Equation (1.18) is based on the assumption that detection is performed using 

the output of a Doppler filter without subsequent noncoherent integration. This 

limitation can be avoided, and the equation applied to radars using noncoherent 

integration of n filter outputs, by replacing D(1) with D(n). The increase in avail-

able energy, relative to (1.16), is expressed by the ratio Pavtf /Pt > 1 in the nu-

merator, and the decrease in required single-sample energy relative to (1.18) 

through the ratio D(n)/D(1) < 1 in the denominator. The coherent and 

noncoherent gains from all n pulses are thereby included in the range calculation.  

Blake’s radar equation, promulgated also through the first two editions of 

Skolnik’s Radar Handbook [15, 16], yields an accurate prediction of the maxi-

mum detection range for a target at any elevation angle, using realistic models of 

radars with any types of waveform and processing under actual environmental 

conditions. The steps required to modify his equations for modern radar problems 

are relatively minor, and are discussed in Section 1.6. 

1.3.5 Blake’s Bistatic Range Equation 

Blake extends his basic radar equation to bistatic systems [12, Eq. (1.38)]: 

 Bistatic radar:  
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where Rt and Rr are the transmitter-to-target and target-to-receiver paths, respec-

tively. The quantity (RtRr)
1/2 is the geometric mean of the two paths in the bistatic 

system. The comments of Section 1.3.1 apply equally to this equation.  

The Blake chart can also be used with bistatic radar, yielding the geometric 

mean range. Separate calculations of the pattern-propagation factors Ft and Fr are 

needed to arrive at the two-way factor F = (FtFr)
1/2 in line 8 of the chart. The it-

eration procedures for attenuation in lines 9–14 are carried out using the sums of 

one-way attenuations over the two paths, considering their elevation angles 

(which should be recorded separately at the top of the chart along with the two 

antenna heights). 

Blake’s equations and chart are intended primarily for use in cases where tar-

gets are detected within the unambiguous range of the radar waveform. The re-

sults will be correct for detections beyond the unambiguous range, but errors may 
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arise from eclipsing by the transmission (see Section 1.6.1 and 10.1.2) or loss of 

integration caused by use of varying PRIs. 

1.4 OTHER FORMS OF THE RADAR EQUATION 

1.4.1 Hall’s Radar Equations 

Hall presents in [17] a radar equation for pulsed radar, preceding Blake’s work, 

and clarifying many of the issues in previous literature:  

 Pulsed radar: 
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 (1.20) 

This is equivalent to (1.14) with the following substitutions: 

 The gain G 2 for a common transmitting/receiving antenna replaces GtGr; 

 F4 is included in the numerator as the two-way pattern-propagation factor; 

 System temperature T0Fn is used for a receiver connected directly to the out-

put terminal of an antenna in an environment at standard temperature T0 = 

290K; 

 The product 1.2Dx(n)LtL, replaces DL, where Dx(n) is the effective detecta-

bility factor given by the product of the following five terms: 

D(n) = basic (theoretical) detectability factor for noncoherent integra-

tion of n pulses; 

Lm = loss for nonoptimum bandwidth; 

Lp = beamshape loss; 

Lc = collapsing loss; 

Lo = operator and degradation factor. 

The factor Dx is used in the equation for modern radars (see Section 1.6). The fac-

tor 1.2 that multiplies Dx in (1.20) represents the matching loss for an optimum 

receiver bandwidth Bn = 1.2/, assuming an unmodulated pulse. Additional loss 

related to nonoptimum IF bandwidth is captured in the loss Lm. 

A subsequent presentation by Hall of a general radar equation is applicable to 

monostatic and bistatic radars systems that use any waveform [18, Eq. (8)]: 
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 General case:  
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This expression combines Blake’s (1.18) and (1.19), with the following substitu-

tions: 

 The coherent integration time tf is assumed equal to the observation time to; 

 The product of detectability factor and loss D(1)L is replaced by Dx(1)LtLr.  

 The product of one-way atmospheric attenuations Lt and Lr for the transmit-

ting and receiving paths is used in the denominator. 

Accurate results are available from Blake’s widely promulgated method, so Hall’s 

expressions have received little attention. They are included here to illustrate ap-

propriate use of the energy ratio in radar equations. 

1.4.2 Barton’s Radar Equations 

The initial radar equation used in the 1964 Radar System Analysis [19] used peak 

transmitter power and noise power in the receiver bandwidth rather than energies. 

This lapse was corrected in the 1988 Modern Radar System Analysis [20] where 

radar equations are based on Blake’s and Hall’s work, the latter having introduced 

the effective detectability factor Dx(n) in place of the basic factor D(n) and its as-

sociated losses. Barton’s equation for pulsed radar is [20, Eq. (1.2.25)]: 

 Pulsed radar: 
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 (1.22) 

The RF loss L1 that reduces available energy ratio are stated as separate terms Lt 

and L. The loss L2 that increases the required energy ratio is included in Dx, and 

is defined to avoid error caused by use Blake’s factor Cb in connection with elec-

tronic detection. Alternate forms of the equation are given for two types of coher-

ent radar: 

 Coherent integration over entire observation time [20, Eq. (1.2.26)], where 

energy Pavto in the observation time replaces single-pulse energy Pt, and sin-

gle-sample Dx(1) replaces Dx(n); 

 Coherent integration over CPI, followed by noncoherent integration over to 

[20, Eq. (1.2.27)], where energy Pavtf in the CPI replaces single-pulse energy 

Pt, and Dx(n) is replaced by Dx(n), where n = to/tf. 
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The second alternate form is used as the basis for a modified Blake chart, an ex-

ample of which is shown in Figure 1.2.  

 

Figure 1.2  Modified Blake chart [20, p. 21]. 
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The user entries in this version of the Blake chart are in basic units, avoiding 

the multiple conversion factors of the original chart. The range-equation constant 

now includes only the factors (4)3, k, and a factor converting range in m to km: 

 
    

   

1
3 423

7 4 4 4 4

Constant 4 1.38 10 J/K 1000m/km

3.65 10 K km J m 75.6 dB ref K km J m


    

 

       
 

 

The procedures for entry, intermediate calculations, conversion to and from deci-

bels, and iteration to account for atmospheric attenuation are the same as in the 

original Blake chart. Blake’s Cb is replaced by the matching factor M, defined in 

Section 10.2.3. 

The 2005 Radar System Analysis and Modeling gives the most general form 

of the radar equation as [21, Eq. (1.20)]: 

 General case: 
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This is the form used for the modified Blake chart of Figure 1.2, but with an added 

factor Fp
2 to account for possible polarization mismatch between transmitting and 

receiving antennas. That factor, normally set to unity, is included to emphasize the 

need to consider that the polarization of the receiving antenna may not match that 

applicable to the echo as calculated using the transmitted polarization and the 

normally specified target cross section  in the radar equation. For example, when 

right-hand circular polarization is used both for transmission and reception, the 

usually specified  gives the echo of the left-hand circular polarization component 

to which the receiving antenna is insensitive (see Section 10.1.1). 

1.5 AVOIDING PITFALLS IN RANGE CALCULATION 

It is appropriate here to comment on the different forms of the radar equation pre-

sented above and elsewhere in the literature, and to point out sources of error in-

volved in their use. 

1.5.1 System Noise Temperature Ts 

The product kTFn in the original equation (1.9) was intended to represent the noise 

spectral density N0 at the receiver input. Blake carefully defines his corresponding 

product kTs and its several components to improve the accuracy of noise calcula-
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tions [12, p. 152]. His approach is especially important in modern systems where 

the noise figure is low and the antenna is directed toward the cold sky. His expres-

sions are discussed in Chapter 6, with examples showing significant errors in re-

sults of the radar equation when the temperature of the environment that surrounds 

the radar is simply assumed to be T0 = 290K.  

Blake’s formulation should be adopted as a permanent substitute for less me-

ticulous expressions for thermal noise in any radar equation. This practice has 

been followed in the first two editions of Skolnik’s Radar Handbook [15, 16] and 

in Barton [20–22]. Other presentations of the radar equation mistakenly rely on a 

simplified relationship N0 = kT0Fn, which is adequate only for radars in which 

Fn >10 dB. For modern radars it fails to model accurately the noise spectral densi-

ty, with resulting errors in the order of 1–2 dB in calculation of the minimum re-

quired signal energy. 

1.5.2 Use of Signal-to-Noise Energy Ratio 

Both the original equation and those of Blake and Hall are properly based on rati-

os of input signal energy to noise spectral density, rather than of input power to 

noise power in some ill-defined (and generally unmeasureable) bandwidth. This 

allows the use of North’s fundamental matched-filter relationship for the maxi-

mum available signal-to-noise ratio [3]: 

 
max 0

S E

N N

 
 

 
 (1.24) 

where E is signal energy and N0 the noise spectral density at the filter input. This 

gives the upper limit to potential radar performance, and can be applied to a radar 

using any waveform by applying a matching factor for cases in which the actual 

receiver and processor fall below the performance of the matched filter. The re-

quired input energy ratio is increased by this matching factor. 

Radar equations using transmitter power Pt in the numerator and receiver 

bandwidth Bn or some “effective receiver bandwidth” in the denominator almost 

inevitably lead to errors, and are inapplicable when pulse compression or frequen-

cy-modulated CW signals are transmitted. Even with unmodulated pulses, when 

Bn < 1/, the small value of Bn in the denominator of the equation leads to an erro-

neously large Rm, approaching infinity for Bn  0 (which corresponds to an inop-

erative receiver). With Bn >> 1/, the resulting Rm may be too small because 

smaller video (or display) bandwidth reduces the noise relative to that passed by 

the receiver. 

Surveying the radar literature, many authors place the noise power for receiv-

er bandwidth Bn in the denominator of the radar equation. In cases where the pulse 
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energy does appear in the numerator, the derivation is often based on the assump-

tion that an unmodulated pulse with Bn = 1 is used.  

1.5.3 Use of Average Power 

Radar equations that include average rather than peak transmitter power, such as 

(1.18), (1.21), or (1.23), are to be preferred because they emphasize the depend-

ence of radar detection range in the thermal noise environment on average power, 

rather than on peak power or other waveform parameters. Those parameters are of 

practical importance for reasons other than establishing detection range. Use of 

peak power is not necessarily erroneous, as long as the contributions and losses 

from approximately matched filtering and integration, both coherent and 

noncoherent, are properly expressed for the waveform and processing actually 

used by the radar. Such expressions become increasingly difficult in modern ra-

dars, where system bandwidth is not a measureable parameter. 

1.5.4 Bandwidth Correction and Matching Factors 

An error arises when Cb expressed by (1.17) is applied in the equation for radars 

using electronic detection. The value Cb = 1.0 for Bn = 1.2 falsely implies that 

such an “optimum filter” is a matched filter. The original radar equation was de-

rived for radars with detection performed visually on a cathode-ray-tube display. 

The value of V, as determined experimentally, includes losses of 2–3 dB inherent 

in the display/observer process even when the “optimum bandwidth” is used 

[19, p. 171]. The detectability factor D used in (1.14) or (1.16) is defined for sys-

tems in which a matched filter is used, and hence requires use of a matching factor 

M, differing from Cb, to express any filter mismatch effects. This issue is dis-

cussed further in Sections 4.6 and 10.3. 

1.5.5 Detectability Factors for Arbitrary Targets 

Exact equations for detectability factors of commonly used target models are giv-

en in the literature and in Chapter 4. An expression for the single-pulse, steady 

target (Case 0) value denoted by D0(1), as derived by Rice [23], is readily solved 

using mathematical programs that run rapidly on personal computers. Marcum 

[24] extends the theory to D0(n) for radars using noncoherent integration of multi-

ple pulses. Swerling [25] gives expressions for detectability factors applicable to 

target models denoted by Cases 1–4 with amplitude statistics corresponding to 

chi-square distributions with two or four degrees of freedom and with slow or fast 

fluctuations of amplitude, denoted in this book by D1(n)...D4(n). These exact ex-

pressions are supplemented in [21] by a generalized model leading to a factor 

De(n, ne) for targets whose statistics follow the chi-square distribution with 2ne 
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degrees of freedom. The generalized model covers Cases 0–4 and also targets for 

which the number of independent target samples is 1  ne  n, including 

noninteger values commonly encountered. 

Chapter 4 presents both exact and approximate methods of calculating detect-

ability factors for all these models. Errors of several decibels can result from use 

of an inappropriate target model, as is likely for targets described by Swerling 

models when the radar system takes advantage of diversity in time, frequency, 

space, or polarization. 

1.5.6 Pattern-Propagation Factor 

Inclusion of pattern-propagation factors Ft and Fr, or their geometric mean F, in 

the numerator of the radar equation is essential for accurate range calculation in 

any case where the target is not on the elevation beam axis and the elevation 

mainlobe is not clear of the surface underlying the radar-target path. Most texts 

contain some reference to the need for these factors, often discussing them sepa-

rately from the radar equation, rather than embedding the factors in the equation. 

The treatment of this factor for phased array radars observing off-broadside tar-

gets requires special attention (see Section 10.2.1). 

1.5.7 Loss Factors 

The beamshape loss Lp is listed as one component of the loss factor L included in 

(1.16) and (1.18). This assumes that the target is not on the axis of the radar beam 

during the entire integration time of the echo pulses (e.g., when the radar scans 

across the target position). It is shown in Chapter 5 that Lp is a function of the re-

quired detection probability Pd unless several pulses, distributed across the 

mainlobe of the antenna pattern, are integrated as the beam scans.  

Another issue that requires careful consideration is the relationship between 

beamshape loss and the antenna pattern embedded in the pattern-propagation fac-

tor F. Blake’s method applies Lp to the effect of azimuth scan of a conventional 2-

D search radar, while allowing F 4 to describe the effect of the target position in 

the elevation pattern. For two-dimensional scan, F = 1 can be used along with a 

loss Lp
2 for regions where there are no surface-reflection effects and where the 

average performance over an elevation sector is to be evaluated. This issue will be 

discussed in Chapter 8. 

In phased array radars, the gain at the beam axis varies with off-broadside 

scan angle. The gains Gt and Gr are normally defined on the beam axis at broad-

side, and the off-broadside scanning factor is included in the pattern-propagation 

F, which is then a function of both elevation and azimuth. Alternatively, an aver-

age scan loss over the sector may be defined (see Section 10.2.1) to account for 

the gain variation over the scan. As with beamshape loss, the scan sector loss in-
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creases the energy ratio required at broadside by an amount that depends on the 

specified Pd, unless the energy transmitted in each beam dwell is adjusted as a 

function of scan angle to compensate for the reduced gain of the off-broadside 

beams (see Section 10.2.1). 

The miscellaneous loss Lx in the equations is intended to include a number of 

loss factors, discussed in detail in Chapter 10. Several of these loss factors are also 

functions of the required Pd, and hence must be varied along with the detectability 

factor D if accurate range results are to be obtained. 

1.5.8 Summary of Pitfalls in Range Calculation 

Common errors in using the radar equation include the following: 

 Use of T0 = 290K rather than the actual system noise temperature Ts. 

 Use of signal-to-noise power ratio in an ill-defined bandwidth B, instead of 

energy ratio. Any radar equation that includes a receiver bandwidth B will 

cause confusion, at best, and at worst will cause serious errors in the range 

calculation. 

 Use of peak power without including the corresponding processing factors 

and losses. 

 Use of the bandwidth correction factor Cb with other than the visibility factor 

V that includes the losses from visual detection. 

 Use of a visibility factor or detectability factor that fails to account for statis-

tics of the actual target and radar diversity. 

 Failure to include the appropriate pattern-propagation factor. 

 Failure to account for all the actual losses. 

1.6 RADAR EQUATION FOR MODERN RADAR SYSTEMS 

1.6.1 Factors Requiring Modifications to the Range Equation 

Developments in radar technology and countermeasures to radar have imposed 

new problems in applying the radar range equation. Most of these problems can be 

solved by including an appropriate range-dependent response factor Frdr in the 

numerator of the radar equation. The factor Frdr includes several components as 

described below. The factors become especially important with low-observable 

targets, whose reduced cross sections may prevent detection beyond the range at 

which eclipsing and STC take effect. 
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1.6.1.1 Eclipsing  

Eclipsing of the received signal occurs with two classes of waveform: (1) low-

PRF radars using solid-state transmitters with duty cycles in excess of  1%; and 

(2) medium- and high-PRF radars.5 

 Solid-State Transmitters. Solid-state RF power amplifiers cannot provide high 

peak powers in exchange for low duty cycle6, as is the case for power tubes. 

Hence, the design of solid-state transmitters tends toward higher duty cycles, 

typically Du = 5% to 20%, in order to obtain the required average power 

while staying within the low peak rating of the devices. For low-PRF radar 

the pulse repetition interval tr must be long enough to avoid range ambiguity, 

and higher Du requires longer pulses than commonly used in tube transmit-

ters. For example, an unambiguous range of 450 km requires tr  3 ms. For 

Du = 20% the resulting transmitted pulsewidth   600 s. Echoes from tar-

gets at range R < Rmin = c/2  90 km, are eclipsed: the early portions of the 

echo overlap the transmission, causing loss in signal-to-noise ratio. Echoes 

from R > Ru  Rmin, where Ru = c /2fr, also suffer eclipsing of the far end of 

the echo. The radar equation for such cases includes a range-dependent 

eclipsing factor Fecl as a component of Frdr. 

Some solid-state radars use dual-pulse groups in which each long pulse is ac-

companied by a shorter pulse, offset in frequency from the long pulse, to cov-

er the short-range region eclipsed by the long pulse. In this case, only the av-

erage power of the longer pulse contributes to the detection of long-range tar-

gets, and the radar equation should reflect this. Eclipsing at the far end of the 

unambiguous range region is not avoided by using the short-range pulses. 

The eclipsing factor for a radar that cannot detect a low-observable target be-

yond Rmin may prevent detection within that range. 

 MPRF and HPRF waveforms have long been used in airborne radars, and ap-

pear also in some types of surface-based radar. Implicit in these waveforms is 

the requirement to detect targets with R > Ru. Calculation of maximum detec-

tion range then requires introduction of the eclipsing factor in the radar equa-

tion. The factor at a particular PRF is a deterministic function of range. When 

multiple PRFs are used in each beam position (either within the beam dwell 

or from scan to scan) the factor is usually represented statistically (see Sec-

tion 10.2.1). 

                                                           
5  The desired targets for low-PRF waveforms are within the unambiguous range; for high-PRF wave-

forms they are within the unambiguous velocity; for medium-PRF waveforms they are beyond both 

unambiguous range and velocity. 
6  Duty cycle (or duty factor) is the ratio of the pulse duration to the pulse repetition interval. 
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1.6.1.2 Sensitivity Time Control (STC) 

Many low-PRF radars use STC to avoid saturation of the receiver or processor on 

large targets or clutter at medium and short range, and to suppress undesired de-

tections of small moving objects such as birds and vehicle traffic at those ranges. 

STC is applied to reduce receive sensitivity at delays within some STC range Rstc, 

which is chosen to establish a threshold target cross section min above which tar-

gets are to be detected. Attenuation is applied at RF prior to the receiver, or in the 

early stages of the receiver, to restrict the amplitude level of expected echo inputs. 

The effect of the range-dependent STC factor Fstc is illustrated below in Figure 

1.5. A radar with STC loses the ability to detect, even at short range, a low-

observable target whose cross section is less than min. 

1.6.1.3 Beam Dwell Factor 

Radars may in some cases move the beam so rapidly that the receiving beam axis 

does not remain near the angle at which the transmitted pulse illuminates a long-

range target, and from which the echo arrives after a delay td < tr.  

 If continuous scan occurs at a rate  such that the angular change  = tr 

between pulses is significant but less than the beamwidth in the scanned co-

ordinate, a beam-dwell factor is introduced that depends on range. If  is 

greater than the beamwidth, the echo signal is lost. 

 Radars with electronic scan usually scan in steps such that the beam dwells at 

the position used for transmission until the echo from the most distant ex-

pected target has arrived. In some cases, the receiving beam may return to the 

angle of a target that was illuminated by a prior pulse whose echo is sought, 

but that mode of operation is unusual, and the time available for the return 

dwell among other radar functions is limited. 

In either case, the scanning radar discriminates against signals arriving with 

delay exceeding the dwell time of the beam in the direction of transmission, and a 

beam dwell factor Fbd is included as a component of Frdr in the radar equation to 

describe this effect. 

1.6.1.4 Frequency Agility or Diversity 

Pulse-to-pulse change in frequency (agility) or group-to-group change (diversity) 

is used to evade jamming and to average the observed target RCS (e.g., for reduc-

tion in fluctuation loss). In either technique the receiver frequency is changed to 

that of the immediately preceding transmitted pulse. The beneficial effect on RCS 

averaging is included in the target model used to calculate the detectability factor 

De(n, ne). Discrimination against echo signals arriving after the frequency change 
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requires inclusion of a frequency diversity factor Ffd as a component of Frdr in the 

radar equation. 

1.6.1.5 Lens Factor 

The lens loss introduced by Weil [26] is caused by the change in tropospheric 

refraction with elevation angle. Although discussed by Blake [12, pp. 188–192], it 

is sometimes overlooked omitted because it does not appear as a specific term in 

the radar equation. To avoid this, the two-way lens factor Flens2 is included here as 

a component of Frdr. It must not be lumped with the atmospheric attenuation L in 

the denominator of the equation because it is not a dissipative loss that increases 

the system noise temperature. 

1.6.2 Equations Applicable to Modern Radars 

Modern Radar System Analysis Software, Version 3.0 [22] is a comprehensive set 

of worksheets (to be referred to as MRSAS3, and loosely termed a program), that 

runs under the Mathcad program to calculate radar detection range and meas-

urement accuracy. This version of program was developed during a period in 

which changes in radar technology and increased concern over reduction of target 

cross section exposed limitations in earlier forms of the radar equation, as dis-

cussed in Section 1.6.1. The program was designed to provide a more thorough 

analysis of radar performance, in which (1.23) was modified by addition of the 

range-dependent response factor Frdr for voltage response of the system, whose 

square modifies the available energy as a function of range: 
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where 

Frdr = FeclFstcFbdFfdFlens2 = product of radar response factors varying with 

range; 

Fecl = eclipsing factor;  

Fstc = sensitivity-time-control factor; 

Fbd = beam-dwell factor; 

Ffd = frequency-diversity factor; 

Flens2 = two-way lens factor. 

These five factors are discussed in detail in Chapters 7 and 10, and for the present 

the following brief descriptions will suffice.  

 Eclipsing Factor. Eclipsing has long been recognized as an important factor 

in high- and medium-PRF airborne radar, where the duty cycle exceeds that 
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commonly found in low-PRF systems. With the advent of high-duty-cycle, 

solid-state radar transmitters in surface-based radar, eclipsing becomes a 

more general problem. The resulting factor Fecl is discussed in Section 10.1.2. 

 STC Factor. STC applies a variable voltage gain Fstc  1 at RF prior to the re-

ceiver or in the early stages of the receiver (see Section 10.1.2). It is assumed 

here that significant competing noise is introduced in receiver stages subse-

quent to the STC, so that the output signal-to-noise ratio varies as the square 

of Fstc, compared to its value with constant gain. 

 Beam-Dwell Factor. The beam-dwell factor Fbd is normally unity, but de-

creases when beam motion reduces the antenna gain on the target between the 

time the signal is transmitted and when the echo is received (see Section 

10.1.2).  

 Frequency Diversity Factor. The frequency diversity factor Ffd is unity as 

long as the receiver remains tuned to the frequency of the echo arriving at the 

radar. It is included here to ensure that echoes from ambiguous ranges are ex-

cluded, as dictated by use of frequency diversity or agility.  

 Lens Factor. Weil showed that this factor reduces the available energy for 

targets near the horizon at long range, where the beam is spread in elevation 

by tropospheric refraction (see Section 7.4). Because it is not a dissipative 

loss that increases the antenna temperature, as does the atmospheric absorp-

tion loss L, it is best expressed as a factor separate from absorption.  

The resulting radar equation [22, Eq. (7.67)] is rewritten here to include the 

new range-dependent response factor: 

 Modern radar: 
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1.6.3 Method of Calculating Detection Range 

A simple iteration procedure is used in the Blake chart to solve for detection range 

in the presence of range-dependent atmospheric attenuation. The introduction of 

the additional range-dependent response factors and the possible change in signal 

processing mode with range require a more robust method. This is based on the 

fundamental approach described in Section 1.1: the available and required energy 

ratios are found as functions of range, and the maximum range is found for which 

the two ratios are equal. The process can be graphical [21, Section 1.6], or imple-

mented by computer [22]. Graphs generated as intermediate results in [22] illus-

trate that procedure and the effects of range-dependent terms on both available 

and required energy ratios. 
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1.6.3.1 Example Radar Range Calculation 

Table 1.1 lists the parameters of a noncoherent 2-D low-altitude surveillance radar 

to be used as an example. The available and required energy ratios E/N0 and Dx for 

Pd = 50% are shown in Figure 1.3, for a 1.0-m2 target flying inbound at a constant 

1 elevation, using Modern Radar System Analysis Software [22]. The program 

makes calculations at 100 equal inward steps in range, from a user-selected max-

imum (150 km in this case). To find Rm, values of E/N0 and Dx (in decibels) are 

inspected until their difference is positive. Interpolation is applied to find the exact 

Table 1.1  Example 2-D Radar 

Radar frequency f0 3.0 GHz  Wavelength  0.10m 

Peak power Pt 100 kW  Average power Pav 110.8W 

Pulsewidth  = n 1.0 s  Pulse repetition frequency fr 1108 Hz 

Transmitter line loss Lt 1.0 dB  Antenna gain G 40.0 dB 

Azimuth beamwidth a,  1.3  Elevation beamwidth e 2.0 

Azimuth scan sector Am 360  Frame time ts 6.0 

Pulses per dwell n 24  System temperature Ts 987K 

Detection probability Pd 0.50  False-alarm probability Pfa 106 

Basic detectability factor D 2.7 dB  Matching factor M 0.8 dB 

Beamshape loss Lp 1.2 dB  Miscellaneous loss Lx 3.3 dB 

Detectability factor Dx 8.0 dB  Attenuation L (at Rm)  1.8 dB 

Pattern-propagation factor F 1.0  Range-dependent factor Frdr 0 dB 

Target RCS  1.0 m2  Range in thermal noise Rm 132 km 
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Figure 1.3  Energy ratios versus range for example radar: signal energy (solid line), required energy 

(dashed line). MTI processing increases Lx for R < Rp = 50 km.  
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range (Rm = 132 km, in this case) for which E/N0 = Dx. The example radar is mod-

eled as using MTI processing out to a range Rp = 50 km, but the increase in Dx 

caused by MTI loss within that range does not affect Rm as long as Rp < Rp. < Ru. 

(where in this case Ru = 135 km). 

1.6.3.2  Example for Solid-State Radar 

A possible solid-state version of the example radar is modeled, having the same 

average power and unambiguous range but a duty cycle of 20%, giving a pulse 

width  = 180 s. Eclipsing occurs for R < 27 km, and for 108 km < R < 162 km, 

giving the effect as shown by the available energy ratio plotted in Figure 1.4. De-

tection now occurs at Rm = 114 km, where almost full pulse compression gain 

becomes available as the incoming target emerges from the eclipsed region. 

Eclipsing at short range has no effect on Rm in this case. 

1.6.3.3 Example for Radar with STC 

Figure 1.5 shows the result of applying STC within the first half of the unambigu-

ous range of the example radar. The upper curve shows the desired effect for a 

target cross section  = 1m2, where the available energy is maintained well above 

the requirement for all R < Rm. The solid curve is plotted for a smaller target 

( = 0.032m2 = 15 dBsm), showing that such a target fails to reach the require-

ment for Pd = 50% at any range. This performance would be desirable in an air 

traffic control radar, for example, where the desired targets have   1m2 and 
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Figure 1.4  Energy ratios versus range for solid-state radar with Du = 20%. 
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where almost all birds would be rejected. It would be unacceptable in a modern air 

defense radar. 

1.6.4 Vertical Coverage Charts 

The result of a Blake chart or other solution to the radar range equation gives one 

point in the vertical-plane coverage of a surveillance radar, for which the pattern-

propagation factor F(t) is valid, where t is the specific target elevation used in 

calculation. Because the range R in the Blake chart is directly proportional to F, a 

simple method of constructing the plot is to calculate F() as a function of varying 

elevation angle , and express the detection range envelope as R(). This would 

be adequate if there were no significant change in the atmospheric attenuation 

over the elevation beamwidth, but otherwise the iterative procedure for calculation 

of attenuation would have to be repeated at several elevation angles over the sec-

tor to be plotted. The procedure used in [22] calculates the available energy ratio 

using F, L, and Lrdr as functions of range for each plotted elevation, using small 

enough steps to produce smooth coverage curves. Calculation of the required en-

ergy ratio Dx as a function of range, caused by factors such as beamshape, MTI 

losses, and STC, also provides results not readily obtained in using the Blake 

chart. Coverage for the example radar is shown in Figure 1.6. 

The chart shown in Figure 1.6 was calculated for the radar of Table 1.1 oper-

ating over a land surface with rms height deviation h = 3m, generating only one 

significant reflection lobe that lies below 0.1 elevation. This lobe would extend 

beyond the unambiguous range Ru = 135 km, except that the increased Dx in that 

region exceeds the available energy ratio, truncating the coverage to Ru. The same 

increased Dx, caused by use of MTI processing for R < Rp = 50 km, causes a slight 

lump in the curves at the top of the beam, where they pass through that range. At 

0 20 40 60 80 100 120 140
10

0

10

20

30

40

Target range (km)

d
B

 a
b

o
v
e

 N
_

0

Rp Rm

.

 

Figure 1.5  Energy ratios versus range for example radar with STC. 
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the center of the beam,  = 1, the curve for Pd = 50% agrees with the detection 

range shown in Figure 1.3. 

Range calculations at a single elevation are useful for many purposes, but 

they fail to convey the information shown in the vertical coverage chart. That 

chart provides, in visually interpretable form, data necessary for evaluation of 

surveillance radar performance. On the other hand, plots such as those shown in 

Figure 1.3–1.5 are necessary to interpret the factors that control the detection 

range at a given elevation. Both presentations, and other intermediate results, are 

needed to avoid errors that are commonly encountered in estimating radar range.  

1.6.5 Required Probability of Detection 

The detectability factor D used in the radar equation depends on the required 

probability of detection. That probability is often assumed to be Pd = 0.5–0.9, 

based on an arbitrary specification. The requirement actually depends on the oper-

ating mode of the system that accepts the radar output. A single alarm is seldom 

sufficient to alert the system to target presence, since reaction to such an alarm 

would be triggered by each random false alarm from noise or interference. Con-

firmation by a second detection and initiation of a track file is usually required, 

implying single-scan Pd  0.5 (often  0.8) for reliable track acquisition and 

maintenance. Figure 1.7 shows the number of scans required to obtain a given 

cumulative probability of track acquisition, as a function of single-scan Pd. 
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Figure 1.6  Vertical coverage chart for example radar, for Pd = 90% (inner curve) and Pd = 50% (outer 

curve). 



 Development of the Radar Equation 29 

The probability of track retention for a given number of scans is shown in 

Figure 1.8, for different values of single-scan Pd. It is apparent from these two 

figures that Pd  0.8 is a requirement if the radar is to support reliable track-while-

scan. 

Many modern radars, including multifunction array radars and conventional 

search radars that are associated with phased-array tracking radars, can allocate 
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Figure 1.7  Cumulative probability of track acquisition versus scan number for single-scan detection 

probabilities from 50% to 90%, for a typical track-while-scan system. The track initiation re-

quirement is detection on at least 3 out of 5 successive scans. (From [21].) 
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Figure 1.8  Probability of track retention versus number of scans for different single-scan detection 

probabilities, applicable to a typical track-while-scan system in which track is dropped after two 

successive missed detections. (From [21].) 
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their resources in such a way as to initiate and maintain tracks when Pd in the 

search mode is much lower than 0.8. Ability to schedule an immediate validation 

dwell after initial detection, possibly with an increase in transmitted energy rela-

tive to that used in the routine search function, permits target presence to be con-

firmed and tracking to be initiated with high probability, with small increases in 

time and energy requirements. The result is that the maximum tracking range is 

that at which the cumulative probability of detection Pc, rather than Pd, reaches an 

acceptable value. Values of Pd  0.3 or less can then be used in the radar equation, 

significantly extending radar range [27]. 

1.7 SUMMARY OF RADAR EQUATION DEVELOPMENT 

This chapter traces the evolution of the radar equation from its origin during 

World War II through its application to modern radars. The contributions of La-

mont Blake are emphasized, and his method of expressing the equations is sug-

gested as an accurate starting point for current and future analyses of radar per-

formance. Modifications to Blake’s equations are presented that adapt them to 

more complex characteristics and modes of modern radar systems, but his funda-

mental approach remains the foundation of reliable estimates of radar detection 

range. To quote Marcum [24, p. 1] in discussing the original radar equation,  

The number of pitfalls that may be encountered in the use of the above equation are almost 

without limit, and many of these difficulties have been recognized in the past. 

New difficulties have been recognized since Marcum published his study. Modern 

computational techniques overcome many of these limitations and provide results 

with high precision, but they often mask other problems while encouraging reli-

ance on procedures that induce errors far greater than the displayed precision. 

Avoiding such errors was central to Blake’s careful analysis of the problem. That 

is also the aim of the subsequent developments discussed in [20–22], in this chap-

ter, and throughout the remainder this book. 
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CHAPTER 2 

The Search Radar Equation 

The radar equations presented in Chapter 1 give the detection range of an existing 

or proposed radar for which the major parameters are known. They can be used to 

test different sets of parameters and to compare the results of competing radar 

designs for a given task, determining which best meets requirements such as the 

range at which a specified detection performance is available given the available 

beam dwell time and investment in equipment and input power.  

The search radar equation is a modification of the basic equation that allows 

one to avoid the process of generating many alternative designs and testing them 

to see which can meet a specified objective. It provides an estimate of the mini-

mum radar size, as measured by the product of average transmitter power Pav and 

receiving antenna aperture area A, that can search a given volume of three-

dimensional space with a specified level of detection performance. Alternatively, 

it can define the volume that can be searched by a radar of specified size while 

providing a specified level of detection performance. Neither the wavelength nor 

the waveform need be known to obtain these estimates, and hence it is unneces-

sary to postulate details such as the signal processing methods or the resolution 

properties of the radar until a later stage in the synthesis or analysis of the radar 

design. 

The search radar equation originated in a 1948 study by Edward Barlow and 

his associates at Sperry Gyroscope Company that was presented in a classified 

report [1]. That report has apparently never been declassified, but the derivation of 

the equation was presented in [2] and it has subsequently seen wide use. For ex-

ample, it provides the basis for the definition of a class of radars whose siting was 

limited by the (now defunct) U.S.-Russian ABM Treaty to locations on the pe-

riphery of the using country, looking outward. It serves as a reference for quick 

evaluation and comparison of proposed radar designs and systems on which avail-

able data are limited. 
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2.1 DERIVATION OF THE SEARCH RADAR EQUATION 

The search radar equation is derived from an idealized model of the search pro-

cess. An angular sector is to be searched in a specified period of time by a trans-

mitting beam that may either scan the sector or illuminate it continuously, while 

one or more receiving beams recover and integrate the energy of resulting target 

echoes. Free-space propagation is assumed. A combined search loss factor is in-

cluded to account for departures from the idealized model of the radar and envi-

ronment. Steps in derivations of the equations are as follows. 

Search Sector. The first step in derivation of the search radar equation is to 

establish an idealized model of the search sector, specified as a solid angle s 

steradians, within which the radar resources of time and energy are to be confined. 

The solid angle s is normally specified in terms of the width Am of the azimuth 

sector and the upper and lower limits m and 0 of the elevation sector: 

    0sin sin   steradianss m mA      (2.1) 

where Am is in radians. Note that the elevation angle m is positive for a surface-

based radar, for which normally 0  0. For a radar elevated above the surface, 

either or both angles can be negative, the only requirement being that m > 0. 

Transmitting Beam Sector. The transmitting beam is modeled as rectangular 

in shape with uniform gain over a beam sector bt  s given by 

  max minsin sin   steradianbt at t t at et          (2.2) 

where  

at = azimuth width of transmitting beam (rad); 

tmax = elevation of upper edge of transmitting beam (rad); 

tmin = elevation of lower edge of transmitting beam (rad); 

et = tmax  tmin = elevation width of transmitting beam (rad). 

The transmitting beamwidths are either matched to the search sector or made 

small enough that the radar can scan the sector s with no overlap between adja-

cent beams or excursion beyond the sector. The latter case is normally assumed, 

justifying the small-angle approximation in (2.2). The solid angle b of the beam 

is related to the gain Gt of the idealized transmitting antenna by a simple expres-

sion, based on the assumption that the transmitted energy is confined to and uni-

formly distributed within the rectangular-shaped beam: 

  
4

   steradiansbt at et

tG


      (2.3) 
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where 4 is the solid angle of a sphere surrounding the radar, over which an iso-

tropic antenna would spread the radiated power. Equation (2.3) states the fact that 

the gain Gt of an antenna varies inversely with the solid angle of its beam. We 

consider later the limitation on the gain that can be produced by a practical anten-

na, requiring replacement of the factor 4 by 4/Ln  10.75 from [3, p. 334]. 

Search Frame Time. Targets in the search sector are to be detected with spec-

ified probability within a search frame time ts. This allows expression of the ob-

servation (or dwell) time to in each transmitting beam position as 

  
4

   secs s bt s

o

bt s t s

t t t
t

n G

 
  

 
 (2.4) 

where nbt = s/bt is the number of transmitting beam positions in the search sec-

tor.
1
 

Coherent Integration. The idealized radar performs coherent integration of 

the echo energy received in the period to, during which the transmitted energy is 

  
4

   Jav s

t av o

t s

P t
E P t

G


 


 (2.5) 

Further Assumptions. The following assumptions also apply to the idealized 

search radar and process: 

 The gain of the ideal receiving antenna is given by (1.5), with the receiving 

aperture equal to the physical area
2
 of the receiving antenna, Ar = A: 

 
2

4
r

A
G





 (2.6) 

 The target cross section is a constant , located on the axes of the nearest 

transmitting and receiving beams, at broadside to the antenna array if one is 

used. The basic steady-target detectability factor D0(1) for this case is as giv-

en by Rice [4] (see Section 4.2). 

 Free-space paths give pattern-propagation factors Ft = Fr = 1.  

 The system noise temperature Ts = T0 = 290K.  

                                                           
1  For electronically scanned array antennas, broadening of the beam at angles off broadside reduces 

the number of beams required to scan a given sector. 
2  We use here the physical aperture A rather than the effective receiving aperture Ar appearing in 

some discussions, to base the equation on a truly ideal reference. 
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 All losses relative to the ideal are lumped into a search loss factor Ls.  

Search Radar Range. With these assumptions, the maximum detection range 

from (1.18) becomes 

 
 

 
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0 0

 m
4 1

av s
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s s

P t A
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kT D L

 
  

  

 (2.7) 

The three-dimensional search volume is defined by the angular sector s and 

the maximum range Rm. The transmitting antenna gain and number of beams 

transmitted into the search sector cancel out of the equation, leaving the energy 

density per unit solid angle Pavts/s (in J/steradian) as the transmitter illumination 

density in the search sector. As long as the echo energy is collected efficiently by 

the receiving aperture A, it makes no difference whether the energy appears in 

short periods to << ts from a transmitting antenna with high Gt, or any longer peri-

od with lower Gt , approaching the limiting case of continuous low-gain illumina-

tion of the full sector for ts seconds by a nonscanning transmission: bt = s, nbt = 

1. If the transmitting beam scans the sector, the receiving beam must follow it to 

receive all the echo energy incident on the receiving aperture from the illumina-

tion of each beam position. If the transmitting beam illuminates a solid angle bt 

greater than that of a single receiving beam (i.e., the transmitting aperture is 

smaller than A), then multiple receiving beams must be formed in parallel to col-

lect the echo energy returned to the receiving antenna. Receiving aperture effi-

ciency a < 1.0 for requires that the corresponding loss factor L = 1/a be includ-

ed in the system loss factor. If coherent integration is not performed over the ob-

servation time to, a corresponding noncoherent integration loss must be included 

in Ls. 

Power-Aperture Required for Search. Inversion of (2.7) to solve for the pow-

er-aperture product Pav A required to meet a search specification gives 
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 (2.8) 

The task assigned to the search radar determines five of the terms in (2.8):  

 s, Rm, D0, ts, and .  

The factors 4, k and T0 are constants. Only Pav and A on the left side and Ls on 

the right side are controlled by decisions of the radar designer. The challenge in 

applying the search radar equation is to define the appropriate search sector s and 

estimate the losses that enter into Ls. These steps are critical to use of the equation, 



 The Search Radar Equation 37 

 

since the idealized assumptions made in its derivation require that s be carefully 

defined and that many losses, usually totaling  20 dB or more, be identified and 

quantified. 

2.2 SEARCH SECTORS FOR 2-D AIR SURVEILLANCE 

Air surveillance radars are described as two-dimensional (2-D) when their output 

data are range and azimuth, and three-dimensional (3-D) when range, azimuth, 

and elevation data are provided. Both types search within the three-dimensional 

space used in the search radar equation. 

2.2.1 Elevation Coverage in 2-D Surveillance 

The 2-D air surveillance radar coverage pattern in elevation can seldom be defined 

simply in terms of the maximum and minimum elevation angles m and 0 used in 

(2.1). Requirements typically follow one of the curves plotted in Figure 2.1.  
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Figure 2.1  Typical vertical coverage requirement options for 2-D air surveillance radar. 
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Air surveillance coverage is customarily specified in terms of the maximum 

altitude Hm of intended targets and required detection range Rm, over the full 360 

azimuth sector. The elevation coverage of the idealized beam, which is rectangu-

lar in angle space, is shown by solid lines as a right triangle. Its lower side extends 

horizontally (at zero elevation) from the radar to range Rm; the right side extends 

vertically from that point to an altitude Hm above the curved Earth; and the hypot-

enuse is a straight line returning from that point to the radar. The elevation beam-

width 1 (2.8 in the example shown) is expressed as 

  1 arcsin  rad
2

m m

m e e

H R

R k a

 
   

 
 (2.9) 

where 

Hm = maximum target altitude (m); 

ke =   4/3 = Earth’s radius factor; 

ae = 6,378,000m = Earth’s radius. 

The minimum and maximum elevations for use in (2.1) are 0 = 0 and m = 1. 

The maximum-altitude target is detected the at range Rm, but at shorter ranges it 

lies above the idealized beam. This is far from ideal in the practical sense. One of 

the five other patterns shown will typically be used in practice, with appropriate 

entries in the search radar equation as described below. 

2.2.2 Fan-Beam Pattern for 2-D Surveillance 

In fan-beam 2-D radar the elevation beam patterns for transmitting and receiving 

are matched to the required elevation search sector. A possible fan beam contour, 

shown in Figure 2.1 as a dashed curve, approximates the idealized triangle, but its 

half-power beamwidth has been adjusted to e  1.51 to include the point Rm, Hm. 

This moves the upper shoulder of its pattern above the hypotenuse of the triangle 

and extends the beam peak beyond Rm. Targets at altitude Hm still lie above the 

beam at R < 0.9Rm, so detection at maximum altitude is only possible in a narrow 

range interval near Rm. Even this small departure of the fan beam from the ideal-

ized coverage triangle requires the following adjustments of entries in the search 

radar equation. 

 An elevation beamshape loss Lpe = e/1  1.5 = 1.76 dB is included as a 

component of Ls to account for the increase in beamwidth of the 2-D radar 

antenna. This results from inability to synthesize the square-ended beam cor-

responding to the idealized triangular pattern shown in Figure 2.1, thus violat-

ing the assumption that the transmitted energy is uniform from 0 to 1, as 

used in defining s. This loss is reduced if the aperture height h is large 

enough to permit the full-range coverage pattern to be synthesized by com-
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bining two or more narrow elevation beams to approximate a square-ended 

beam (see Section 10.1.4). 

 The elevation beamshape loss included in Ls is squared, to account also for 

the reduction in effective receiving aperture area Ar = A/Lpe. The two-way 

loss L
2
pe in the search radar equation replaces the beamshape loss Lp = 1.24 

dB used in the conventional radar equation to give the reduction in average 

two-way gain for targets distributed over the elevation beamwidth (see Sec-

tion 5.2). 

 The search solid angle s for fan-beam 2-D radar is calculated using m = 1 

and 0 = 0 in (2.1). 

2.2.3 Cosecant-Squared Pattern for 2-D Surveillance 

Another curve in Figure 2.1 shows a cosecant-squared elevation beam pattern. 

Here the mainlobe extends from zero elevation to 1 at range  Rm, but coverage 

continues along a horizontal line from that point to an upper elevation limit 2. 

Above 2 is a cone of silence in which coverage is lost. The idealized antenna gain 

as a function of elevation angle is 
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 (2.10) 

where Gm is the gain required to achieve detection at Rm.  

The search sector specified in the search radar equation can be adjusted for an 

idealized csc
2
 pattern by using an equivalent value of upper elevation given by 

[5, p. 315, Eq. (7.4)]: 

  1

csc 1 1

2

sin
2  rad

sin
m L

 
      

 
 (2.11) 

where Lcsc is the pattern loss in gain for the csc
2
 coverage compared to the fan 

beam with half-power width 1. This loss approaches a maximum of 3 dB for 

2 >> 1. Use of the equivalent upper elevation angle in calculating s accounts 

for the transmitted energy density over the search sector, but a second application 

of Lcsc is needed to reflect the reduction in effective receiving aperture. Thus, en-

tries in the search radar equation must be adjusted for the csc
2
 pattern as follows: 
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 The required search solid angle s is increased by Lcsc, relative to the fan-

beam radar, to allow for diversion of transmitted energy into the upper shoul-

der of the pattern. 

 The Lcsc in effective receiving aperture is included in Ls. 

 The elevation beamshape loss Lpe remains as listed in Section 2.2.2. 

2.2.4 Coverage to Constant Altitude 

Even with its extension above 1, the csc
2
 pattern does not quite meet the required 

altitude coverage to altitude Hm at ranges within Rm, because 1 from (2.9) has 

been reduced by the Earth’s curvature relative to the angle that would apply over a 

flat Earth. A slight adjustment to (2.10) can preserve coverage to that labeled 

“constant altitude” in Figure 2.1. The resulting losses in on-axis gain for the csc
2
 

and constant altitude patterns are shown in Figure 2.2, along with data for two 

other types of enhanced upper coverage, discussed below. The pattern loss due to 

the use of csc
2
 or other patterns with elevation coverage extended at ranges within 

Rm will be denoted here by Lcsc regardless of the exponent of the csc function used 

or the adjustment for coverage to constant target altitude. All the plots in Figure 

2.2 are calculated for a maximum elevation coverage angle 2 = 45, but there is 

negligible change as that angle varies from 30 to 60. The factor Lcsc appears both 

as an increase in s (for transmitting) and in Ls (for receiving). 

2.2.5 Enhanced Upper Coverage for 2-D Surveillance Radar 

When sensitivity time control (STC) is used in a 2-D surveillance radar with a csc
2
 

or constant-altitude pattern, the detection range is reduced on targets at ranges 
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Figure 2.2  Pattern loss Lcsc for csc2 and other patterns with extended upper coverage, as a function of 

full-range elevation sector width 1. 
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where STC is applied. To avoid this, an antenna pattern with enhanced upper cov-

erage is used [6]. Two such curves are shown in Figure 2.1, corresponding to 

gains varying as csc
3/2
 and csc. Figure 2.2 includes plots of loss Lcsc for these 

two cases. For the csc pattern the equivalent upper elevation is given by 

  2

csc 1 1

1

sin
1 ln  rad

sin
m L

  
       

   

 (2.12) 

As with csc
2
 coverage, both s and Ls are increased in the search radar equation to 

account for the extended coverage, and the elevation beamshape loss Lpe is also 

applied. 

2.2.6 Reflector Antenna Design for 2-D Surveillance Radar 

Reflector antennas for csc
2
 or other enhanced upper coverage are designed in ei-

ther of two ways: (1) reflector area is added at the top or bottom of the parabolic 

surface, deviating from the parabola to divert that energy into the upper coverage 

region and illuminated by a broadened horn pattern; or (2) multiple feed horns are 

stacked one above the other, fed from a power divider whose coupling is adjusted 

to provide the desired pattern shape. Option (1) increases the physical aperture A 

but reduces the effective area Ar relative to a simple paraboloid, increasing the 

loss by the factor Lcsc relative to the fan beam (and by a greater factor relative to 

the increased area A). Option (2) uses the aperture height required for the 

mainlobe of width  1, but reduces its effective area by Lcsc. In both cases there is 

an increase in receiving aperture loss included in Ls, in addition to that caused by 

illumination tapers applied for sidelobe reduction in both coordinates and by spill-

over and feed blockage. 

2.2.7 Array Antennas for 2-D Surveillance Radar 

There are also two design approaches available for electrically fixed array anten-

nas with csc
2
 or other enhanced upper coverage: (1) rows of radiators are added at 

the top or bottom of the array, for which the amplitudes and phases are adjusted to 

form the desired upper coverage; or (2) the number of element rows is chosen for 

an elevation beamwidth  1, and multiple feed lines are coupled to each row with 

complex weights that generate the radiated field contributions required for the 

upper coverage. The two methods are equivalent to those discussed for reflectors, 

and the same loss considerations apply. Active arrays are seldom used in 2-D ra-

dars, but if this is done the first option may be required to avoid distortion caused 

by saturation of power amplifiers with variation in the amplitude of excitation. 
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2.2.8 Example of Required Power-Aperture Product for 2-D Radar 

The search radar equation can be applied to estimate the power-aperture products 

required for each coverage curve of Figure 2.1. Typical parameters common to all 

coverage options are shown in Table 2.1. To compare results for a specific choice 

of radar band, the wavelength has been assumed as 0.23m (L-band), and the aper-

ture dimensions calculated based on a beamwidth constant K = aw/ = 1.1. The 

upper coverage is assumed to be obtained by manipulation of the illumination 

over the aperture height h = 5.2m needed to obtain e = 1.51. 

Table 2.2 shows the results of applying (2.8) to the parameters shown in Ta-

ble 2.1. The required power-aperture product increases as more power is diverted 

into the upper coverage. The increased requirement shown in the last two columns 

is attributable to the enhanced upper coverage made necessary by the application 

of STC to avoid receiver saturation from clutter and false alarms from small mov-

ing targets at short range.  

Table 2.1  Parameters Common to Example 2-D Search Radar 

Target cross section  m2 1.0 Frame time ts s 6 

System noise temperature Ts K 500 Detectability factor D0(1) dB 12 

Search loss Ls (excluding Lpe, Lcsc) dB 20 Maximum range Rm km 170 

Azimuth sector Am deg 360 Minimum elevation 0 deg 0 

Maximum full-range elevation 1 deg 2.8 Maximum target altitude Hm km 10 

Wavelength  m 0.23 Azimuth beamwidth a deg 1.5 

Aperture width w m 9.7 Aperture height h m 5.2 

Aperture area A m2 50    

 

 

Table 2.2  Results from Search Radar Equation 

Requirement Unit 
Elevation pattern 

Fan  csc2 Const. H  csc1.5 csc 

Maximum elevation 2 deg 2.8 45 45 45 45 

Elevation beamshape loss Lpe dB 1.76 1.76 1.76 1.76 1.76 

Pattern loss Lcsc  dB 0.0 2.86 3.42 3.98 5.65 

Effective elevation sector m deg 4.2 5.4 6.2 7.0 10.3 

Solid angle of sector s  sterad 0.31 0.59 0.67 0.77 1.13 

Power-aperture product kW·m2 7.66 28.6 37.1 47.9 103.3 

Average power Pav W 153 570 740 956 2,063 
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2.3 THREE-DIMENSIONAL AIR SURVEILLANCE 

This section considers air surveillance conducted by radars that scan mechanically 

in azimuth, with elevation coverage provided by stacked beams that operate in 

parallel to cover the elevation sector or a single beam that scans the sector. Elec-

tronic scan in both coordinates, using a mechanically fixed array, is discussed in 

Section 2.4. 

2.3.1 Stacked-Beam 3-D Surveillance Radars 

The stacked-beam 3-D radar uses a single transmitting pattern similar to that of 

the 2-D radar. Multiple, narrow receiving beams are stacked one above the other, 

within the transmitted beamwidth, to cover the elevation sector. The equivalent 

upper elevation angle m used in the search radar equation is given in Sections 

2.2.1–2.2.5. The gains of the receiving beams are selected independently, giving 

flexibility in apportioning of transmitting and receiving gains over the elevation 

sector. To obtain the equivalent of the csc
2
 2-D coverage, for example, one of the 

following approaches may be used: 

 Receiving beams use the gain of the full aperture, allowing the transmitting 

pattern to follow a csc
4
 pattern that minimizes the loss Lcsc.  

 Receiving beamwidths vary with elevation so that both transmitting and re-

ceiving gains follow the csc
2
 envelope, with losses as given in Section 2.2.3.  

 The transmitting pattern is csc
2
, while receiving beams following the csc

1.5
 or 

csc envelope to overcome the STC effect discussed in Section 2.2.5, while 

providing consistent height accuracy in the upper coverage.  

The first method is seldom used because it requires the largest number of receiv-

ing channels. The second uses fewer channels but the broad beamwidths at high 

elevations increase losses and compromise the accuracy of height measurement.  

The elevation beamshape loss Lpe applies to the transmitting antenna of a 

stacked-beam 3-D radar when the full-range coverage sector is provided by a sin-

gle beam (i.e., when the aperture height h  K/1). The loss is reduced when two 

or more beams are combined to approach a square-ended beam. For the stacked 

receiving beams Lpe  Lp = 1.24 dB, and Lcsc is based on the receiving gain profile 

applied to the upper coverage. 

2.3.2 Scanning-Beam 3-D Surveillance Radars 

The scanning-beam 3-D radar has achieved wide use since development of the 

electronically scanned array (ESA). The basic problem is to cover all elevation 

beams in succession during the time of antenna scan through the azimuth beam-



44 Radar Equations for Modern Radar 

 

width (the azimuth dwell time toa). Electronic scanning is combined with variation 

in elevation beamwidth, transmitted energy, and pulse repetition interval as a 

function of beam elevation, in order to cover the elevation sector within that time. 

As a result, the full aperture A is brought to bear only on lower elevation portions 

of the search sector. The equivalent upper elevation calculated in Sections 2.2.1–

2.2.5 accounts for the additional energy transmitted into the upper coverage, and 

the loss Lcsc approximately measures of the effect of the coverage extension on 

effective receiving aperture. The azimuth spacing between elevation scans often 

leads to increased beamshape losses relative to other types of surveillance radar 

(see Sections 2.4.2 and Chapter 5). 

The elevation beamshape loss Lpe applies to the transmitting antenna of a 

scanning-beam 3-D radar when the full-range coverage sector is provided by a 

single beam, but is reduced when two or more beams are combined to form a 

square-ended beam. The loss Lpe is the net beamshape loss Lpn for the scanned 

receiving beams (see Sections 5.3.5, 5.4.6, and 5.5.6), and Lcsc is based on the re-

ceiving gain profile applied to the upper coverage. 

2.3.3 Search Losses in 3-D Surveillance Radar 

The class of 3-D surveillance radars discussed above rotate mechanically to cover 

the azimuth sector. The net azimuth beamshape loss Lpn is that calculated for the 

search radar equation but with a smaller number of samples per beamwidth for 

scanning-beam types, because of the need to cover many elevation beam positions 

during the azimuth dwell time. This increases the azimuth beamshape loss, espe-

cially for high values of Pd (see Chapter 5). In elevation, the specified Pd is re-

quired at range Rm on targets averaged over elevations 0    1, considering the 

pattern-propagation factor within the elevation mainlobe. To avoid too deep a 

drop in Pd near the horizon, the axis of the lowest beam is normally placed below 

1/2. In stacked-beam systems this may require a half-power transmitting beam-

width greater than 1, as discussed in Section 2.2.2. Other search loss components 

are as discussed in Section 2.6. 

2.4 SURVEILLANCE WITH MULTIFUNCTION ARRAY RADAR 

The multifunction array radar (MFAR) can perform search as well as tracking and 

fire control functions, using one or more planar array faces. Each face may be 

served by an individual transmitter, or a common transmitter may be switched 

among faces. Allocation of radar resources in transmitted energy and time is var-

ied under software control according to the defense strategy or in response to the 

threat and environmental conditions. In place of a fixed search volume, as de-

scribed in Section 2.2, the MFAR search coverage is commonly divided into sev-
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eral sectors, i = 1, 2, … m, with different values of Rmi, angle limits, and frame 

times tsi, and each sector is allocated some fraction of the resources. To establish 

requirements for the search fraction of the power-aperture product, the search ra-

dar equation is applied separately to each sector, and often to more than one threat 

condition. For example, there may be a “normal” condition under which a major 

fraction of the resources is assigned to the search function, and one or more “bat-

tle management” conditions requiring diversion of search resources to fire control. 

2.4.1 Example of MFAR Search Sectors 

A typical search allocation for the normal condition (clear air, low engagement 

rate) is  50% of the total resources. An example of vertical coverage sectors for a 

long-range surface-to-air missile (SAM) system for use against aircraft is shown 

in Figure 2.3. The requirements on each of m = 3 sectors are listed in Table 2.3. 

Within each sector, the narrow MFAR beam performs a raster scan with beams 

spaced by approximately 3, the half-power beamwidth (3 = 1.4 at broadside). 

The example assumes that a single array face is used, with azimuth sectors 

that are within the scan capability of typical array designs. The long-range and 

horizon sectors use a csc
2
 envelope, slightly modified to preserve coverage up to 

the maximum target altitude of the sector. The high-elevation sector is specified to 

provide coverage to the maximum target altitude at elevations above the long-

range sector, without overlapping that coverage. The horizon search sector over-

laps the long-range sector, and uses a high revisit rate to guard against low-
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Figure 2.3  Example of vertical coverage sectors for MFAR air defense radar. 
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altitude threats that might be masked by terrain until they pop up at relatively 

short range. Its angular extent is minimized to avoid an excessive time allocation. 

Each dwell is assumed to use three pulses, providing frequency diversity or alter-

natively supporting moving-target indication (MTI).  

2.4.2 Advantages and Disadvantages of MFAR Search 

An advantage of the MFAR search mode is that tracks can be initiated using vali-

dation and multiple track-initiation dwells immediately following the first detec-

tion, even when that detection results from a low signal-to-noise ratio with result-

ing low single-scan Pd. The range of track initiation is that for which the cumula-

tive probability of detection Pc, rather than single-scan Pd, reaches the desired level 

[7]. This rapid-validation approach is a form of sequential detection [8].  

Disadvantages in MFAR search are scan loss and the need to share radar re-

sources among the search sectors, including validation dwells and other radar 

functions. A further disadvantage is that the frequency band must be chosen to 

accommodate both search and tracking functions, and in general is too high for 

optimum search and too low for optimum tracking. The sharing of resources is 

best expressed by applying (2.7) separately to each search sector, using only the 

fraction of average power allocated to that sector. Similarly, (2.8) will yield the 

Table 2.3  Example of MFAR Search Sectors 

Requirement Unit 
Sector 

Long-Range High-Elevation Horizon 

Maximum range Rm i km 170 89 85 

Maximum target altitude Hm i km 30 30 3 

Maximum range  Rh i at Hm i km 85 42 4 

Maximum elevation 2 i deg 20 45 45 

Minimum elevation 0 i deg 0 20 0 

Azimuth sector Am i deg 90 120 120 

Effective elevation sector m deg 14.6 10.2 3.7 

Solid angle of sector s i  steradian 0.26 0.37 0.13 

Frame time ts i s 10 5 1 

Dwells per s   38 108 196 

Pulses per dwell n  3 3 3 

Average dwell time ntr i ms 4.2 2.5 0.31 

Sector time fraction TF i  0.159 0.266 0.060 

Total search time fraction TF  0.485 
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required product of receiving aperture and the average power that must be allocat-

ed to the sector.  

MFAR design normally holds the peak power constant, but permits adjust-

ment of transmitted energy per beam through changes in pulsewidth. The same 

aperture is used for all sectors, but its effective value can be varied by defocusing, 

to reduce the allocated search time at the expense of increased energy per beam. 

MFAR beam broadening and pattern losses L and Lcsc are calculated in the 

same way as for a scanning-beam 3-D radar. For the coverage shown in Figure 2.3 

it can be assumed that Lpe = Lp = 1.24 dB for the long-range and high-altitude sec-

tors, because the detection envelope of the narrow scanning beam can be closely 

matched to the required coverage. For the low-altitude sector, Lpe  1.5 = 1.76 dB 

because the beamwidth is approximately  equal to the sector width. 

2.4.3 Example of Search Radar Equation for MFAR 

As an example of using the search radar equation, assume that the terms common 

to the three regions shown in Figure 2.3 are as follows: 

 Target cross section  = 1.0 m
2
; 

 Detectability factor D0(1) = 15 dB; 

 Search loss Ls = 20 dB; 

 Array aperture A = 1.6 m
2
. 

The system temperature, search loss, and other parameters vary as shown in Table 

2.4. Other values in the table are obtained from (2.8) and Table 2.3. The example 

array aperture assumes an X-band radar with broadside beamwidth of 1.4, a 

broadening factor given by the secant of the off-broadside angle, and use of a fo-

cused beam throughout the coverage.  

Note that the average powers given by application of (2.8) are averaged over 

the entire operating time of the radar. The power averaged over a single sector is 

given by Pav i/TF i for sector i, and that averaged over the search time fraction is 

Pav /TF = 11.5 kW. A transmitter rated for  10 kW average power would be ade-

quate, provided that individual dwells up to 25.3 kW for  2 ms could be support-

ed for the horizon sector. 

In this example, the fact that the high-elevation sector consumes the largest 

time fraction while using the least average power suggests that it would be appro-

priate to defocus the beamwidths in that sector. Table 2.5 shows the result of in-

creasing both beamwidths by a factor of two. The time allocated for search is re-

duced, average power in the three search sectors is more uniform, but over the 

reduced search time fraction it averages twice that for the original allocations. Use 

of the search radar equation, however, makes this type of trade-off a simple exer-

cise. 
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2.5 THE SEARCH FENCE 

The search fence is a narrow coverage region, usually in elevation, through which 

a target must pass to enter a defended area. Warning of a target entering the de-

fended area is obtained using minimum resources, and subsequent tracking is as-

signed either to the tracking mode of the radar that provides the fence or to a sepa-

rate radar. An example of the search fence is the scan of a narrow elevation sector 

for detection of ballistic targets as they rise above the launch site or the radar hori-

zon. An early application of the technique was in location of hostile mortar or 

Table 2.4  Example of MFAR Power Calculation 

Requirement Unit 
Sector 

Long-Range High-Elevation Horizon 

Maximum range Rm i km 170 89 85 

Solid angle of sector s i  steradian 0.34 0.21 0.09 

Frame time ts i s 10 5 1 

Sector time fraction TF i  0.159 0.266 0.060 

System temperature Ts i K 350 300 400 

Search loss Ls i (excluding Lps, Lcsc) dB 20 18 22 

Elevation beamshape loss Lpe dB 1.24 1.24 1.76 

Pattern loss Lcsc  dB 1.19 0.0 1.57 

Product Pav i A W-m2 5,500 252 1,650 

Average power Pav i kW 3.44 0.16 1.03 

Average power Pav i/TF i W 16.5 1.0 25.3 

Total search average power Pav W 4.6 

Total search time fraction TF  0.40 

Average power during search W 11.5 

 

Table 2.5  MFAR Power Calculation with Defocusing in High-Elevation Sector 

Requirement Unit 
Sector 

Long-Range High-Elevation Horizon 

Sector time fraction TF i  0.159 0.038 0.060 

Average power Pav i kW 3.44 5.11 1.03 

Average power Pav i/TF i kW 16.5 16.6 25.3 

Total search average power Pav kW 5.1 

Total search time fraction TF  0.287 

Average power during search kW 17.8 
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artillery sites, near the end of World War II. It has subsequently been applied in 

the Ballistic Missile Early Warning System (BMEWS) designed to alert the Unit-

ed States to attack by intercontinental missiles. 

2.5.1 Search Sector for the Fence 

The geometry of a ballistic missile search fence is shown in Figure 2.4. Most 

search fence applications require coverage of a limited azimuth sector Am, typical-

ly 60–180. rather than the 360 coverage used in air surveillance. The minimum 

elevation is typically near zero, to minimize the delay between target launch and 

detection, although it may be set at 1–2 to reduce atmospheric attenuation in 

missile defense or surface clutter in hostile battery location.  

The available search frame time is determined by the maximum vertical ve-

locity vz of the expected targets, the number of scans nsc required for reliable de-

tection, and the elevation sector width: 

   sm

s

sc e sc z
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t

n n v


 


 (2.13) 

where 

ts = frame time (s); 

 = m  0 = elevation width of fence (rad); 

e = maximum target elevation rate (rad/s); 

vz = maximum vertical component of target velocity (m/s) with respect to 

the plane tangent to the surface at the radar site; 

Rm = maximum range (m) at which targets can enter the fence. 

The required number of scans is usually set to nsc  2, with a high probability of 

detection on each scan, since there will not be another opportunity for detection 

after the target rises above the fence. 
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Figure 2.4  Ballistic missile search fence. 
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Substituting (2.13) into (2.8), we obtain the search-fence equation: 
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 


 (2.14) 

Note that the power-aperture product depends on the cube, rather than the fourth 

power of range, because targets at longer range have smaller elevation rates, al-

lowing larger frame times. 

2.5.2 Example ICBM Fence 

For example, assume an ICBM search fence for the conditions shown in Table 

2.6. The target for this case is an ICBM launched from a site 2,600 km from the 

radar, which is deployed halfway between the defended area and the launch site.  

At the end of its boost phase, the ICBM is 600 km downrange with 250 km 

altitude and a velocity vt = 7 km/s directed 16 above the horizontal at that point, 

2,000 km from the radar. The tangent plane at the radar is tilted by some 18 from 

the horizontal at the target. The elevation angle of the velocity vector from the 

radar plane is 34, and the vertical velocity component is 3.9 km/s, resulting in an 

elevation rate e = 0.11/s. Assuming the two scans must be obtained during the 

passage of the target through the scan sector, the time per scan is ts = 9s. The re-

quired power-aperture product from (2.14) is 

  6 247 10  W mavP A     

If the early warning radar operates at 450 MHz ( = 0.67m) with a circular re-

flector antenna, its diameter Da = 23m, and its area A = 412m
2
. The resulting aver-

age power requirement is Pav = 114 kW. If subsequent tracking tasks are assigned 

to the same radar, the required power is increased. 

Table 2.6  ICBM Search Fence 

Azimuth sector Am deg 90 Maximum range Rm km 2,000 

Number of scans nsc  2 Elevation beamwidth e deg 2.0 

System noise temperature Ts K 400 Detectability factor D0(1) dB 15 

Search loss Ls dB 15 Target cross section  m2 1 

Target vertical velocity vz km/s 3.9    
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2.6 SEARCH LOSSES 

The apparent simplicity of the search radar equation is the result of the many as-

sumptions imposed on the idealized system. This approach leads, however, to the 

requirement that the system loss factor Ls accommodate many nonideal factors 

that characterize actual radar systems and environmental conditions. 

In Chapter 1, separate factors are included in the range equation for reduc-

tions in available energy ratio at the antenna output and increases in required en-

ergy ratio for the specified detection performance. The search loss factor Ls in-

cludes both sets of factors, along with others that are unique to the search radar 

equation. The losses, including reciprocals of the range-dependent factors F
2
rdr, are 

summarized here.  

2.6.1 Reduction in Available Energy Ratio 

Components of Ls that reduce the available energy ratio are as follows: 

 Elevation Beamshape Loss Lpe. This loss results from obtaining the coverage  

to range Rm up to elevation angle 1 using a fan beam rather than the idealized 

square-ended triangular beam (see Section 2.2.2). 

 Pattern Loss Lcsc. The loss results from extending elevation coverage above 

1 at ranges R < Rm. (see Section 2.2.3). 

 Antenna Dissipative Loss La. This loss adjusts the idealized antenna gains 

used in (2.3) and (2.6), which are actually the directivities Dt and Dr of the 

antennas, to the actual power gains Gt. and Gr (see Section 10.1.5). 

 Pattern Constant Ln. This loss adjusts the gain-beamwidth relationship of the 

idealized transmitting beam assumed in deriving (2.3) to correspond to the 

value achievable in actual antennas. Ln = 1.16–1.28 (0.64–1.07 dB) applies to 

rectangular and elliptical apertures with illumination varying from uniform to 

low-sidelobe tapers. Reflector and lens antennas typically have an additional 

loss of 0.6–1.0 dB from spillover and (in reflectors) from blockage (see Sec-

tion 10.1.5). 

 Receiving Aperture Efficiency a. The ideal gain Gr appearing in (2.6) applies 

to a uniformly illuminated aperture under ideal conditions, but must be re-

duced for factors that result from tapered illumination, blockage of the path 

into space, spillover in space-fed antennas, and tolerances in construction that 

cause departures from a radiated plane wave (see Section 10.1.5).  

 Receiving Noise Loss Lrec. The temperature T0 = 290K is used to establish the 

noise spectral density in (2.7). The loss that accounts for the actual system 

noise temperature Ts (see Chapter 6) is defined as 
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 rec 0 ,sL T T where Ts is averaged over the search sector. 

 Transmission Line Loss Lt (see Section 10.1.1). 

 Atmospheric Attenuation L. For use in the search radar equation this loss 

(see Chapter 7) is calculated by averaging the attenuation over the two-way 

path to the limits of the search sector.
3
 

 Polarization Loss Lpol. This loss is the reciprocal of the polarization factor Fp
2
 

introduced in (1.23) to describe the reduced received energy resulting from 

mismatch of the received polarization to that of the echo from a target cross 

section  when illuminated by the transmitting antenna (see Section 10.1.1). 

 Range-Dependent Response Loss Lrdr. This loss is the reciprocal of the range-

dependent response factor Frdr (see Sections 1.6.2 and 10.1.2). 

2.6.2 Increase in Required Energy Ratio 

The product kT0D0(1) in (2.8) represents the minimum required energy ratio for 

detection on a steady target using a single coherently integrated sample of the re-

ceived signal, for an idealized receiving system in a room-temperature environ-

ment. Factors in the radar that increase the required energy ratio and must be in-

cluded in Ls are listed below. 

 Integration Loss Li (see Section 4.4.3). 

 Fluctuation Loss Lf (see Section 4.4.5). 

 Matching Factor M (see Section 10.2.3). 

 Beamshape Loss Lpe (see Section 2.2.2 and Chapter 5).  

 Miscellaneous Signal Processing Loss Lx (see Sections 1.3.1 and 10.2.5). 

 Scan Sector Loss Lsector (see Section 10.2.1). 

 Scan Distribution Loss Ld (see Section 10.1.4). 

2.6.3 Summary of Losses 

The losses listed in Section 2.6.1 include ten factors (some of them consisting of 

contributions from several components), that reduce the available energy ratio. 

Those can be grouped into a single value L1, as used previously in (1.7) to repre-

sent the RF loss in energy ratio at the antenna output, as listed in the first part of 

Table 2.7. Four components of Lrdr are listed separately. A further seven losses 

                                                           
3  Strictly speaking, the fraction of energy 1/L after attenuation is averaged over the elevation sector, 

and the attenuation calculated as the reciprocal of that average. 
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that increase the required energy ratio, listed in Section 2.6.2, can be grouped into 

a value L2, also listed in the table.  

Estimates of loss are shown for two typical systems: a mechanically scanning 

2-D radar with the constant-altitude coverage shown in Figure 2.1, and an active 

electronically scanned array (AESA) that covers the same elevation coverage in 

an azimuth sector 45 from broadside. No attempt has been made to detail the 

time budget for the AESA, and the loss estimates are approximate for both sys-

tems, but the total losses are realistic for both systems, relative to the results pre-

dicted for a given product of average power Pav and physical receiving aperture A. 

Table 2.7  Search Loss for Typical Air Surveillance Radar Systems 

Loss Component Symbol 
Loss in dB 

2-D System 3-D AESA 

Elevation beamshape loss Lpe 1.8 1.8 

Pattern (csc2) loss Lcsc 2.2 2.2 

Antenna dissipative Lat + Lar 0.8 0.8 

Pattern constant Ln 1.4 0.4 

Antenna efficiency L 1.8 0.9 

Receiving noise Lrec 2.7 -0.1 

Transmission line Lt 0.8 0.2 

Atmospheric attenuation L 1.5 1.5 

Polarization Lpol 0.0 0.0 

Lens Llens 1.0 1.0 

STC Lstc 0.0 0.0 

Frequency diversity Lfd 0.0 0.0 

Eclipsing Lecl 0.0 0.0 

 Subtotal L1 L1   14.00    8.70 

Integration Li 2.0 1.0 

Fluctuation Lf 1.5 1.5 

Matching factor M 1.0 1.0 

Azimuth beamshape Lp0 1.3 1.3 

Miscellaneous Lx 4.0 3.0 

Scan sector Lsector 0.0 1.5 

Scan distribution Ld 0.0 0.0 

 Subtotal L2 L2 9.8 9.3 

 Total Ls Ls   23.80   18.00 
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The total search loss is normally in the order of 20 dB, reducing the detection 

range to about one-third of that available in a “perfect” radar with the same prod-

uct of average power and physical aperture. The mechanically scanned system 

estimates shown in Table 2.7 total almost 24 dB, while the AESA system total is 

18 dB, in spite of the minimal RF losses within the radar. More accurate evalua-

tions are possible only when the radar parameters are defined in much greater de-

tail than is usual in early phases of a radar development or procurement. When 

considering using the search radar equation in a particular application, however, it 

is possible to use results from a number of radars that have been developed for 

similar applications, and to estimate the minimum Lsmin that can be expected. Sub-

stituting Lsmin in the search radar equation provides a starting point for estimating 

the minimum size of the radar that will be required. When that process leads to a 

specific radar design, the applicable loss components may then be determined to 

refine the calculation. 
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CHAPTER 3 

RADAR EQUATIONS FOR CLUTTER 

AND JAMMING  

3.1 SIGNAL-TO-INTERFERENCE RATIO 

IEEE definitions [1] are used in this book.  

Clutter: Unwanted echoes, typically from the ground, sea, rain or other precipitation, chaff, 

birds, insects, meteors, and aurora. 

Jamming: A form of electronic countermeasures (ECM) in which interfering signals are 

transmitted at frequencies in the receiving band of a radar for the purpose of obscuring the ra-

dar signal (as in noise jamming) or causing confusion in interpreting the radar signal (as in re-

peater jamming). 

Target: Broadly, any discrete object that scatters energy back to the radar. Specifically, an ob-

ject of radar search or tracking. 

The typical sources of clutter listed in the definition apply to radars whose targets 

are manmade objects such as aircraft, missiles, land vehicles, or vessels operating 

in the natural environment that contributes the clutter. In this chapter we adhere to 

that definition. Radars used in navigation, mapping, meteorology, or geophysical 

research are intended to detect or image the natural environment as the target, and 

hence will regard the manmade objects as clutter. Radar equations applicable to 

those applications differ from those discussed here. 

In this book, the signal is the echo from a target, while interference is the sum 

of unwanted inputs to the receiver, including thermal noise, clutter, and jamming. 

To be consistent with the description of target signals and thermal noise in Chap-

ter 1, interference is described by the energy I0 that passes the processor within a 

resolution cell that may also contain the target: 

  0 0

0 0 0 0 0

0 0

 1  W/Hz
C J

I N C J N
N N

 
      

 
 (3.1) 



56 Radar Equations for Modern Radar 

 

where N0 is the spectral density of thermal noise, C0 the energy of the clutter, and 

J0 that of the jamming, all referred to the output port of the receiving antenna. The 

resolution cell in which interference is measured is defined as [1]: 

The one-dimensional or multidimensional region related to the ability of a radar to resolve 

multiple targets. Note: The dimensions that involve resolution can include range, angle, and 

radial velocity (Doppler frequency). The three-dimensional spatial resolution cell is, for ex-
ample: 

  2a e c     

where a = azimuth beamwidth, e = elevation beamwidth,  = pulsewidth, c = velocity of 

electromagnetic waves. 

Interference whose spectrum is spread across the bandwidth of the processor (e.g., 

thermal noise or broadband jamming) is described by the spectral density within 

that bandwidth, replacing N0 in (1.8) and in subsequent radar equations.  

Clutter enters the receiver with the RF spectrum of the transmitted signal, and 

with a Doppler shift that is usually different from that of the target. Its effect on 

the processed output, and on the required threshold setting that determines detec-

tion probability, must be evaluated differently from that of broadband interfer-

ence. When signal processing is used to suppress clutter (e.g., Doppler-based pro-

cessing), an effective input spectral density C0 e expresses the effect of the sup-

pressed interference, referred back to the input where signal energy is measured: 
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The procedure for calculation and use of effective interference spectral densi-

ty I0e is to evaluate the noise density N0 and the energy ratios C0 e/N0 and J0 e/N0, 

insert these in (3.2), and then replace the noise spectral density N0 in the denomi-

nator of the radar equation with I0 e. Derivation of such an equation requires the 

same basic steps that were used in Chapter 1 for the noise environment: 

 Express the maximum signal-to-interference ratio E/I0 e that is available with 

given parameters, as a function of target range R; 

 Express the minimum signal-to-interference ratio Dx that is required to meet 

detection requirements; 

 Combine these expressions to solve for the maximum target range Rm at 

which the requirement is met for the specified radar in the environment. 

The interference that competes with a target at range R may enter the radar 

simultaneously with the target signal and at the same frequency, or may be super-

imposed on the signal as a result of ambiguous response of the receiver/processor 

in time delay (range) or frequency. In general, the equations for interference spec-

tral density are complicated functions of target range, radar waveform, and envi-
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ronmental conditions. Closed-form solutions for detection range can be obtained 

only for special cases. Solutions using graphical techniques or root-finding algo-

rithms are used for the more general case. 

3.2 CLUTTER EFFECT ON DETECTION RANGE  

Clutter may arise from a surface area on the Earth (land or sea), from a volume in 

the atmosphere (precipitation, chaff, insects, or aurora), or from discrete objects 

on or above the surface (prominent surface features, birds, or meteors). The gen-

eral method of range calculation for all types of clutter is discussed here, and ap-

plied in following sections to each individual type. 

3.2.1 Range-Ambiguous Clutter 

Energy from clutter in the spatial resolution cell at a range Rc equal to the target 

range R is one source of interference that competes with the signal entering the 

receiver. However, calculation of input clutter energy, even for low PRF wave-

forms intended to avoid range ambiguity, must also consider all cells at ranges 

given by 

     mci uR R iR   (3.3) 

where 

Ru  =  ctr/2 = c/2fr is the unambiguous range; 

i  =  ambiguity index, imin  i  imax; 

imin  =  smallest (or largest negative) integer that gives Rci > 0;  

imax  =  largest positive integer for which a cell at Rci contains clutter;  

c  =  velocity of light;  

tr  =  pulse repetition interval (PRI); 

fr  =  pulse repetition rate (PRF). 

The clutter energy Ci from ambiguous area i is found by replacing in (1.25) the 

target terms Fp
2
F t

2
Fr

2
F

2
rdr/L with the corresponding clutter terms to obtain 
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where 

c i  =  clutter cross section (see Sections 3.2–3.6); 

Fpc  =  polarization factor for clutter (see Section 10.1.1);  

Fc i  =  pattern-propagation factor for clutter (see Chapters 8 and 9);  

Frdrc i  =  range-dependent response factor for clutter (see Section 1.6.2); 

Lc i  =  atmospheric attenuation for clutter (see Sections 7.2 and 7.3). 
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The total clutter input energy C0 is the sum of Ci over all ambiguities containing 

clutter: 
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3.2.2 Types of Radar Waveforms 

Radar waveforms are defined [1] as belonging to one of four types, for each of 

which a different clutter analysis is necessary. 

 Low-PRF (LPRF) Waveform: 

A pulsed-radar waveform whose pulse-repetition frequency is such that targets of interest are 

unambiguously resolved with respect to range. 

While targets of interest lie within the unambiguous range, clutter may origi-

nate beyond that range (i > 0). The energy received from each ambiguity is 

multiplied by the factor (R/Rc i)
4
 = R

4
/(R + iRu)

4
, relative to clutter at target 

range R, and may contribute to interference even for i > 0, especially if it is 

not reduced by the clutter improvement factor applicable to clutter at range R. 

 Medium-PRF (MPRF) Waveform:  

A pulsed-radar waveform whose pulse-repetition frequency is such that targets of interest are 

ambiguous with respect to both range and Doppler shift. 

For this waveform, clutter at Rc < R (for which i < 0), as well as at Rc  R, 

contributes to interference. The contributions from short-range ambiguities 

exceed that from Rc = R by a large factor when (R + iminRu) << R. 

 High-PRF (HPRF) Waveform: 

A pulsed-radar waveform whose pulse-repetition frequency is such that targets of interest are 

ambiguous with respect to range. 

The HPRF, chosen to avoid Doppler ambiguities, exceeds the MPRF, intro-

ducing more range ambiguities and increasing the input interference, espe-

cially from clutter at range Rc i << R. 

 Continuous-Wave (CW) Waveform: 

The CW radar is defined as a radar that transmits a continuous-wave signal 

that may be phase-modulated. The spatial resolution cell for an unmodulated 

CW waveform is bounded by the antenna beam and extends to a maximum 

range toc/2, where to is the dwell time of the antenna beam. The input clutter 

energy in any given environment is greater than that of an HPRF waveform, 

although use of separate transmitting and receiving antennas may reduce clut-

ter from very short ranges. CW waveforms with periodic phase modulation 
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having repetition interval tr produce range ambiguities at intervals Ru identical 

to those of pulsed radars with PRI = tr. 

3.2.3 Clutter Detectability Factor 

The detectability factor Dx used in the radar equations of Chapter 1 is the required 

ratio of the signal energy to the spectral density of white Gaussian noise. Clutter 

differs from noise in two ways: (1) it is not random from pulse to pulse, and hence 

its spectrum consists of discrete lines within the signal bandwidth; and (2) its am-

plitude distribution may spread beyond that of the Rayleigh distribution that char-

acterizes the sum of in-phase and quadrature Gaussian noise components. Hence, 

a different clutter detectability factor Dxc must be used. 

3.2.3.1 Clutter Spectrum and Correlation Time 

The spectra of different types of clutter (see Chapter 9) are characterized by the 

mean radial velocity relative to the radar and the spread of each spectral line. Ve-

locity parameters are used in preference to the mean and spread of Doppler fre-

quency because they characterize the clutter independently of the radar frequency.  

Spread is measured by the standard deviation v in velocity that results from 

random motion of the clutter scatterers, antenna beam scanning, and projection of 

the mean radial velocity on the antenna pattern. The spread affects the number nc 

of independent clutter samples available for integration, which can be expressed 

as a function of the correlation time tc of the clutter at the radar input and the ob-

servation (dwell) time of the radar beam [2, p. 117]: 
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where n is the number of noise samples integrated. When clutter appears in more 

than one range ambiguity, different values v i and tc i are found for each range Ri. 

3.2.3.2 Clutter Correlation Loss 

In the absence of Doppler processing, the clutter detectability factor depends on 

nc, rather than the number n of target pulses integrated. The increase in required 

energy ratio is described by the clutter correlation loss Lcc: 
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Note that this loss does not reduce the effect of clutter, but rather increases it to 

reflect the increase in signal-to-clutter ratio required for target detection, as com-

pared to white Gaussian noise. 

Doppler-based signal processing increases the number of independent sam-

ples in (3.6), which depends on the spectrum of the clutter at the processor output, 

thus reducing Lcc relative to that applicable to the input clutter. Methods of calcu-

lating nc and Lcc for systems using Doppler processing are given in Chapter 9. The 

loss Lcc i is applied to increase in the effective spectral density for each ambiguity. 

3.2.3.3 Clutter Distribution Loss 

The second source of increased clutter detectability factor is the broader amplitude 

distribution of some clutter. The detectability factors calculated for noise are 

based on a detection threshold that is high enough to meet the specified false-

alarm probability on the exponentially distributed noise power, adjusted for inte-

gration. The probability density function (pdf) of volume clutter is approximately 

exponential, as is surface clutter when viewed at high grazing angles. But the pdf 

spreads as the grazing angle decreases, and can be modeled as a Weibull distribu-

tion having a spread parameter aw  1. The spread varies from aw = 1 for the ex-

ponential distribution to aw  5 for extreme cases.  

This factor increases the clutter detectability factor Dxc by a clutter distribu-

tion loss Lcd. This loss applies to a two-parameter constant-false-alarm-rate 

(CFAR) processor that controls the threshold using estimates of both the mean and 

spread of input clutter. It is defined as the ratio of the threshold yb required to ob-

tain a specified false-alarm probability Pfa with the actual clutter distribution to 

that required for the exponential distribution (see Section 4.2.2). For clutter with a 

Weibull distribution: 
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where Pw
1

(p,aw) is the inverse function of the integral of the Weibull distribution 

for probability p with spread parameter aw and P
1

(p) is the inverse function for 

the incomplete gamma function. The width of the pdf varies over range ambigui-

ties, and separate values of Lcd i are applied as factors to find the effective spectral 

density at each range Ri. 

Given the large loss that results when Weibull clutter with aw >> 1 is input to 

a two-parameter CFAR processor, many radars supplement the CFAR process 

with a clutter map that suppresses clutter peaks (and targets) in the resolution cells 

where they are observed over several scans. Since these peaks are relatively 

sparse, even in regions of strong clutter, the loss is confined to individual map 

cells and the average loss in detection probability caused by target suppression is 
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relatively small. The peaks can be considered discrete clutter, effects of which are 

described in Section 3.5, rather than by the clutter distribution loss of (3.8). 

3.2.3.4 Clutter Detectability Factor 

The clutter detectability factor, denoted here by Dxc, is defined [1] as: 

The predetection signal-to-clutter ratio that provides stated probability of detection for a given 

false alarm probability in an automatic detection circuit. Note: In MTI systems, it is the ratio 

after cancellation or Doppler filtering. 

The losses Lcc from Section 3.2.3.2 and Lcd from Section 3.2.3.3 give corrections 

that are applied to the detectability factor Dx to account for the difference between 

clutter and noise statistics: 

 xc x cc cdD D L L  (3.9) 

3.2.4 Effective Spectral Density of Clutter  

To form the effective input spectral density I0 e in (3.2), the input clutter compo-

nent C0i is adjusted for use with a common detectability factor Dx. The adjustment 

required for clutter in ambiguity i is 
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where Im is the MTI improvement factor, defined [1] as: 

The signal-to-clutter power ratio at the output of the clutter filter divided by the signal-to-

clutter power ratio at the input of the clutter filter, average uniformly over all target velocities 
of interest. Synonym: clutter improvement factor. 

The synonym in the definition covers CW and pulsed Doppler as well as MTI 

radars, and will be used here. The improvement factor for different processing 

methods is discussed in Section 9.6. It may vary over the individual ambiguous 

regions, but an average value 
mI  can be used to express the effective output spec-

tral density of clutter as 
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where Ci is given by (3.4). The terms with overbars are weighted averages over 

the clutter region. 

Adjustment of effective clutter spectral densities for clutter losses, before 

summation is carried out, and averaging of the improvement factor as in (3.11), 
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permits C0 e to be added directly to N0 in (3.2), and the sum is used with a common 

value of Dx in the radar equation to solve for detection range.  

3.2.5 Detection Range with Clutter 

The effective clutter energy given by (3.11) is added to the noise spectral density 

N0 to obtain the effective interference energy I0e in the environment of clutter and 

noise. This allows the detection range Rmc in clutter to be expressed as: 
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where n = to/tf  is the number of intervals tf  over which noncoherent integration is 

performed during the observation time to. Since many terms on the right-hand side 

of this equation are range-dependent, Rmc must generally be found graphically or 

by root-finding. Exceptions to this general rule, where this equation may be writ-

ten in closed form for surface and to volume clutter, are given in Sections 3.3.5 

and 3.4.6. 

The graphical procedure is to plot separately the signal energy E from (1.25) 

and required energy I0 eDx(n) = (N0 + C0 e)Dx(n) as functions of target range R. 

The detection requirement is met at ranges for which E  I0 e + Dx(n) and the 

longest such range is Rmc. The root-finding procedure is to express E and I0 eDx(n) 

as separate functions of R, and create a computer program to find the largest R at 

which the two expressions are equal: 

      0rootmc R e xR E R I R D n     (3.13) 

where rootx[·] is the value of x at which the equality within the brackets is met. 

3.3 DETECTION IN SURFACE CLUTTER 

Surface clutter is backscatter from land or sea surfaces illuminated by the radar 

beam. Two geometrical models of surface clutter are described below: a simple, 

flat-Earth model, and a spherical-Earth model that is detailed further in Chapter 8.  

3.3.1 Clutter from a Flat Surface 

The geometry of surface clutter observed by a the mainlobe of a radar antenna at 

altitude hr above a flat surface is shown in Figure 3.1. The clutter cell lies within 
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the elliptical beam footprint defined by the beamwidths e in elevation and a in 

azimuth, reduced in each case by the beamshape loss Lp to account for the reduced 

two-way antenna gain of off-axis scatterers.
1
 Sidelobe clutter is normally much 

smaller and insignificant, but is discussed in Section 3.6. 

The width of the cell is set by the range Rc and the azimuth beamwidth a. 

The depth (range dimension) is usually set by the range resolution r:
2
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where n is the width of the processed pulse and c is the velocity of light. As stated 

by Blake [3, p. 297], n is the equivalent pulsewidth after processing. This is not 

the 3-dB width 3 conventionally used, but rather a pulsewidth defined in [4, p. 

342] in a way similar to the noise bandwidth of a network: 
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where a(t) is the pulse waveform voltage at the processor output and am is its peak 

value. The ratio n/3 varies from unity for a rectangular output pulse to approxi-

mately 1.06 = 0.24 dB for the outputs of matched filters for rectangular pulses and 

for most pulse compression waveforms. 

                                                           
1  The beamshape loss used in equations for clutter is Lp = 1.33, as obtained for dense sampling by 

integration over the two-way beam pattern (5.1), and denoted by Lp0 (see Section 5.2.3). The addi-
tional subscript 0 is used there to distinguish the dense-sampling value from the varying Lp applica-

ble to targets for the general case that may include sparse sampling, as discussed in Chapter 5. The 

subscript 0 is omitted from equations in this chapter for compactness. 
2 The resolution cell depth for CW radar is discussed in Section 3.3.6. 
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Figure 3.1  Surface clutter geometry. 
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Projected onto the surface, the depth of the beam footprint is increased by the 

cosecant of the grazing angle : 

  1sin  rad
2

cr r

c e e c

Rh h

R k a R

  
    

 
 (3.16) 

where Rc is the range to the clutter that competes with the target echo, keae is the 

effective Earth radius, and the approximation assumes that a flat-Earth model is 

adequate (R
2
c/2keae << hr).  

The beam footprint usually extends beyond the range resolution cell, but as  

increases, and especially for narrowband waveforms, the range resolution cell may 

extend beyond the footprint. This leads to two alternative expressions for the sur-

face area included in the resolution cell. 

3.3.1.1 Pulsewidth-Limited Cell 

This cell depth is limited by the pulsewidth when 

 cot      (m)
2

n ci e

r i

p

c R

L

 
     (3.17) 

The area contributing to the surface clutter for this case is
3
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The need to modify the half-power beamwidth in (3.18) by the factor Lp, now 

called beamshape loss, is recognized in early work on clutter [5, p. 483. Eq. (93)], 

but that factor is used inconsistently in subsequent work, perhaps because error 

from its omission is considered unimportant in comparison with other uncertain-

ties in clutter modeling. Blake’s simple formulation [3, p. 26, Eq. (1.43)] omits 

this factor, but his more detailed discussion of clutter [3, p. 296, Eq. (7.7)] pre-

sents an expression that invokes integration over the beam pattern.
4
 Other litera-

ture uses a “two-way half-power beamwidth” defined as 2,a  which is 0.26 dB 

less than the correct value.  

                                                           
3  The beamwidth in (3.18) is assumed small enough that the small-angle approximation applies. Oth-

erwise, a should be replaced by 2tan(a/2); the error in approximation is < 0.01 dB for a < 10. 
4  That equation contains a typographical error in using the one-way voltage pattern f (,) rather than 

the two-way power pattern f (,)4. 
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3.3.1.2 Beamwidth-Limited Cell 

When the condition specified by (3.17) is not met, the surface clutter area is 

  
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2
= csc csc  mci a ci e ci a e

ci

p p p

R R R
A

L L L

   
    (3.19) 

For this beamwidth-limited case, the factor 1/L
2
p is the same as the integral in the 

weather-radar equation [6, p. 590, Eq. (5)], and in Blake’s detailed discussion pre-

viously cited. The factor /4 = 1.05 dB, appearing in Blake [3, p. 296, (7.4)] and 

elsewhere, is inaccurate for actual antenna patterns, to which 1/L
2
p = 2.48 dB ap-

plies. 

3.3.1.3 Unequal Transmitting and Receiving Beamwidths 

The azimuth beamwidth used in calculating clutter area is the one-way, half-

power beamwidth a when the transmitting and receiving beam patterns are iden-

tical. When they differ, an effective beamwidth may be substituted, calculated as 

 eff
2 2

2 at ar

a

at ar

 
 

  
 (3.20) 

It can be seen that aeff = at = ar when the two are equal, approaching 
22 a  

when a1 >> a2. For the latter case, the angular width of the clutter cell becomes 

2 22 1.06 .a p aL    These relationships apply also to elevation beamwidth in 

(3.19) and in expressions derived in Section 3.4.1 for volume clutter. 

3.3.1.4 Effect of Range Ambiguities 

As discussed in Section 3.2, clutter energy originates not only from the resolution 

cell at the target range R but also in range ambiguities at intervals Ru within and 

beyond R. The range Rc i from the ith ambiguity is then used in (3.18) and (3.19) to 

find an area Ac i for each ambiguous clutter region, and (3.5) applied to find the 

total clutter energy. Multiple ambiguities may also occur for MPRF and HPRF in 

the beamwidth-limited case. 

3.3.2 Surface Clutter from the Spherical Earth 

The surface of the spherical Earth at range R lies below the plane tangent at the 

radar site by 
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where  is the elevation angle, ke  4/3 is the effective Earth’s radius constant for 

atmospheric refraction, and ae = 6.38  10
6
m is the actual radius. The flat-Earth 

approximation is generally adequate at ranges such that h < h, the local rough-

surface height deviation: 

  2 4,124  me e h hR k a     (3.22) 

For moderate sea surfaces and flatland (h < 1m), expressions for grazing an-

gle over a spherical Earth from Chapter 8 are used at ranges R > 4 km, in place of 

(3.16), and for the pattern-propagation factor in (3.4) and (3.5). 

3.3.3 Surface Clutter Cross Section 

The radar cross section c i of surface clutter in each area that competes with a 

target at range Rc is  

  0 2 mc i i c iA    (3.23) 

where 
0
 is the surface clutter reflectivity, defined in [1] as the “backscatter coef-

ficient of clutter,” which in turn is defined as: 

A normalized measure of radar return from a distributed scatterer. For area targets, such as 

ground or sea clutter, it is defined as the average monostatic radar cross section per unit sur-

face area. 

The superscript 
0
 originated at the MIT Radiation Laboratory [5, p. 483], probably 

to suggest that 
0
 is a dimensionless quantity expressing radar cross section in m

2
 

per m
2
 of area Ac.  

In some literature, 
0
 has been defined or assumed to include the pattern-

propagation factor Fc. The two separate terms for reflectivity 
0
 and pattern-

propagation factor Fc are used here to distinguish properties of the surface area Aci 

(included in 
0
) from those of the radar-to-surface path (included in Fc). Folding 

the latter into 
0
 obscures the physical principles that underlie the effects of graz-

ing angle and radar frequency on clutter echoes that reach the radar. Identical ra-

dars observing the same clutter cell with the same grazing angle will receive dif-

ferent echo powers depending on the contour of intervening terrain, and this can-

not properly be attributed to 
0
 for that cell.  

Data on 
0
 and Fc for different surfaces are given in Chapter 9, including dis-

cussion of the constant- model for surface clutter, [2, p. 108]: 
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 0 sin     (3.24) 

In this model, which we will use here and which agrees closely with measured 

data, a reflectivity factor  describes the surface as observed at a given wave-

length. The variation in backscattered power for different viewing geometries is 

captured in the grazing angle  and the clutter pattern-propagation factor Fc. 

The factor Fc  1 for clutter in the near region,
5
 within which the grazing an-

gle exceeds a critical value given by 

  1sin  rad
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 
 (3.25) 

where  is the radar wavelength and h is the standard deviation of clutter height 

with respect to its average. For  < c the factor Fc varies inversely with range, 

the transition occurring at a range R1 given by 
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where hr is the altitude of the antenna phase center above the average clutter sur-

face. For shipboard or airborne radar, hr is the height of the ship superstructure or 

the altitude of the aircraft that carries the radar antenna. For land-based radar, it is 

the sum of antenna height above the ground and the altitude of that ground above 

the surface clutter viewed by the beam. A land-based radar site is usually selected 

on high ground that can be assumed to be 2h above the mean surface. The ap-

proximation in (3.26) is adequate when the Earth’s curvature permits use of the 

flat-Earth model within range R1.  

In the following discussions of surface clutter, examples are presented to il-

lustrate the nature of the clutter problem for surface-based radars. The parameters 

of the pulsed and CW radars used in these examples, and the surface environment 

that characterizes the clutter, are shown in Table 3.1. 

                                                           
5  The near region for clutter is not to be confused with near-field of the antenna, which is the region 

inside the far-field defined in Section 3.4.6. The different regions for clutter modeling are discussed 
further in Section 9.1.2. 
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Table 3.1  Example Radar and Surface Clutter Environment 

Average power Pav 100W  Coherent processing interval tf 0.01s 

Wavelength  0.03m  Transmitter line loss Lt 0 dB 

Antenna gain G 42.7 dB  Beamwidth constant K 1.2 

Aperture width, height w, h 1.5m  Antenna beamwidths a, e 1.4 

Phase-center height hr 12m  Pattern constant Ln  1.17 

Pattern-propagation factor F 1.0  Range-dependent factor F2
rdr = F2

lens 0.984 

System temperature 1,000K  Samples integrated n 1.0 

Detectability factor Dx(1) 100  Target RCS  1.0 m2 

Attenuation L (at Rm)  1.76 dB  Range in thermal noise Rm 93.2 km 

Clutter reflectivity  0.063  Clutter polarization factor F2
cp 1.0 

Surface roughness h  1.0m    

3.3.4 Input Energy of Surface Clutter 

3.3.4.1 Input Surface Clutter Energy in Pulsed Radar 

For pulsed radar, the surface clutter energy at the output of the antenna from each 

ambiguous area Ac i is found from (3.4) using c i from (3.23). These contributions 

are summed as in (3.5) to yield the total input clutter energy: 
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 (3.27) 

The problem in applying this expression to a calculation of detection range Rmc is 

that the range dependence of the clutter pattern-propagation factor Fc i and the 

grazing angle i preclude writing of a closed-form expression for Rmc, even when 

the target pattern-propagation factor is constant. 

For example, Figure 3.2 shows a plot of signal and clutter energy levels for an 

LPRF radar with a pulsewidth n = 1 s. The radar achieves detection in noise at 

Rm = 93.2 km, but as the target, as it flies along the beam axis near zero elevation 

angle. Reflection lobing and possible diffraction loss is omitted from the calcula-

tion. As the target comes within the clutter horizon at 15 km the clutter rises, re-

ducing the ratio of signal to interference below the required Dx = 20 dB. Within 1-

km range, the clutter falls below the elevation beam, restoring the necessary detec-

tion margin. However, the range interval within which detection is impaired can-
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not be found from any simple equation, and reading from the graph or an equiva-

lent root-finding algorithm is necessary. The required improvement factor to avoid 

impairment, Im  18 dB, can be determined from the graph at R = 5 km. 

3.3.4.2 Input Surface Clutter Energy in CW Radar 

Although unmodulated continuous-wave (CW) radar is less widely used than in 

the past, equations developed in this section also serve as starting point for simpli-

fied clutter calculations in HPRF pulsed Doppler radar. Surface clutter in HPRF 

radar and in phase-modulated CW radar can be described by the expressions given 

in Section 3.3.4.1 for pulsed radar, with n representing the width of the range 

resolution cell resulting from a modulated waveform. When several such ambigui-

ties contain clutter, the expressions developed here, modified as in Section 3.3.4.3, 

provide an alternative method that is often more convenient. 

Surface clutter in unmodulated CW radars is beamwidth-limited, according to 

(3.19). At low grazing angles the reflectivity, pattern-propagation factor, and im-

provement factor vary with range within the beam footprint in a way similar to 

those in different ambiguities of pulsed radars. The following expression for clut-

ter energy density as a function of range replaces Ci in (3.5), as noted by Blake 

[3, pp. 298–300]: 
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Figure 3.2  Input energy levels for the example radar using LPRF waveform: target signal E on beam 

axis (heavy sold line), interference I0e (dashed line), detection threshold 20 dB above interference 

(dash-dot line), and noise (light solid line at N0 = 198.6 dBJ). 
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where dc is the RCS density in m
2
 per m of range, which varies with Rc, along 

with the term Fc
4
 in brackets. In the CW radar case, the range-dependent response 

factor Frdr and attenuation Lc are taken as unity and omitted from (3.28), since 

STC cannot be used, the transmission does not eclipse the signal, and short-range 

clutter is dominant. The clutter RCS density is found from (3.19) with csc  1: 
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Figure 3.3 shows the variation in the term dC for a typical CW radar charac-

terized by: Pav = 100W, tf = 0.01s, beamwidths a = e = 1.7, height hr = 12m 

above a land surface for which h = 1m and  = 12 dB. The solid line applies to a 

horizontally directed beam. Ranges shown by vertical dotted lines are R1, the limit 

of the near region, and Ra, the range at which the two-way antenna gain for a hori-

zontal beam is 1/e at the surface: 

 8ln 2 r
a

e

h
R 


 (3.31) 

In the example, Ra = 1,177m. The major contribution to clutter input comes from a 

region 0.5 < Rc/Ra< 2, and contributions for Rc/R1 > 1 are negligible. 
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Figure 3.3  Surface clutter input energy levels with the constant- model of surface clutter for the 

example CW radar: horizontal beam (sold line), and beam elevation to e/3 (dashed line). 
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For a low-sited radar, where the flat-Earth approximation is valid over most 

of the near region Rc < R1, the clutter pattern-propagation factor is  
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where b is the upward tilt of the beam axis. The summation for input clutter ener-

gy C0 in (3.27) is replaced by integration: 
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Only terms within the integral are functions of clutter range Rc. The rapid reduc-

tion in fc as Rc  0 makes the result insensitive to the lower limit of the integra-

tion, but for convenience it is taken here as the height hr above the surface on 

which the antenna is mounted.  

For b = 0 (horizontal beam), the integral in (3.33) reduces to 34 ,aR  

yielding: 
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This can be simplified for equal transmitting and receiving gains given by  

 
4 10.75

a e n a e

G
L


 
   

 (3.35) 

where Ln  1.17 is the pattern constant from Section 2.6.1. The result is a very 

simple expression for CW radar clutter energy: 
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 (3.36) 

For example, with parameters as in Table 3.1, C0 = 5.8  10
10

 J, or 106.3 dB 

above the noise level for noise temperature Ts = 1,000K. Such large clutter-to-

noise ratios define the challenge in design of surface-based CW radars for air de-
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fense applications. Equation (3.36) shows that the clutter input, for a beam di-

rected at the horizon, can be reduced only by increasing the height hr of the anten-

na above the surface, decreasing the ratio of elevation to azimuth beamwidth or 

transmitting less energy (which also reduces signal energy). 

Clutter input can be reduced by tilting the antenna axis upwards. The integral 

in (3.33) for arbitrary beam-axis elevation b reduces to 
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 (3.37) 

where erf(·) is the error function. The result for b = e/3, shown by the dashed 

line in Figure 3.3, reduces the integrated clutter energy by 9.3 dB. The ratio of 

clutter energy for an elevated beam to that for a horizontal beam, given for clutter 

by (3.36), may be expressed by including a beam elevation factor Fb
4
, plotted in 

Figure 3.4 for both the Gaussian beam and the beam pattern of an aperture with 

cosine taper. Also shown is the factor F
4
 for targets at elevation t = 0. The clutter 

is slightly larger for the Gaussian beam with small elevation because the mainlobe 

pattern decays more slowly, but the more realistic cosine illumination generates 

sidelobes that govern the factor for axis elevations above one beamwidth. The 

improvement in signal-to-clutter ratio for elevated beams is the difference be-

tween the clutter and target factors (e.g., 6.6 dB for b = 0.33e). 

The beam elevation factor in Figure 3.4 for the cosine taper was calculated by 

numerical integration. It shows that the clutter energy expressions developed for 

the Gaussian beam are adequate for beams elevated less than about one beam-

width. 
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Figure 3.4  Beam elevation factor Fb
4 for surface clutter (heavy lines) and F 4 for targets at the horizon 

(light lines), with Gaussian beam (solid lines), and beam from cosine-illuminated aperture (dashed 
lines).  
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3.3.4.3 Input Surface Clutter Energy in Pulsed Doppler Radar 

In pulsed Doppler radar, a range gate matched to the pulse width  and centered at 

range Rc from the transmitted pulse passes clutter energy given by integration of 

the clutter density over ambiguous ranges (Rc + iRu)  c/4. Figure 3.5 shows the 

clutter energy in each of nine 1-s gates between successive pulses at tr = 10 s, 

including the first four range ambiguities and using the clutter density shown in 

Figure 3.3. The rectangular gate, sampling over 75m from its center, passes clut-

ter energy given by 

 C0 (dBJ) = density dB(J/m) + 10log(150m) = density dB(J/m) + 21.8 dB(m) 

at each ambiguous range. The clutter energy varies by 6 dB over the nine gates 

(the potential tenth gate is totally eclipsed by the transmitted pulse). The average 

over the gates is 10 dB below the level for the CW radar, as expected for a duty 

cycle Du = /tr = 0.1. For gates 1 and 2 the beam does not reach the surface until 

the second range ambiguity, giving lower clutter than in gates 3–9. 

3.3.5 Detection Range of Surface-Based CW and HPRF Radars  

3.3.5.1 CW Radar Detection Range 

For an unmodulated CW radar the clutter energy is independent of target range, 

and for the horizontal beam the signal-to-clutter ratio at the processor output is 

given by 
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Figure 3.5  Surface clutter input energy levels in HPRF PD radar with Du = 10% and a horizontal 
beam, under the same conditions as for the CW radar of Figure 3.3.  



74 Radar Equations for Modern Radar 

 

 
2 4

4 3

0

39.2 r m

e a e

h F IE

C R L




 
 (3.38) 

where 
mI  is the weighted average improvement factor over the ranges at which 

clutter appears, according to (3.11). It is assumed that the clutter residue in the 

Doppler filters has the same statistical properties as noise.  

These expressions lead to simple expressions for maximum detection range 

for two special cases: 
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where Rm is given by (1.26) and the approximation ignores reduced L at Rmc.
6
 

The value of L(Rmc) within the brackets can be approximated, based on the range 

in thermal noise, or the result of the two-step iteration used in the Blake chart. 

The average improvement factor required for the use of (3.40), for the exam-

ple radar, is found using (3.36) and N0 = kTs: 
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The detection ranges available for improvement factors that are above, equal 

to, or below that found from (3.41) are shown in Table 3.2, which also shows an 

example of performance with an elevated beam. 

                                                           
6  These and subsequent expressions for detection range in clutter Rmc require application of an itera-

tion process similar to that used in the Blake chart to solve for the attenuation L(Rmc) and lens fac-

tor Flens. Use of the attenuation and lens factor for the thermal-noise range Rm gives slightly pessi-

mistic results, which are generally adequate given uncertainties in clutter characteristics. The accu-
rate method is used in the Mathcad worksheets included on the accompanying DVD. 
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Table 3.2  Example Detection Ranges 

Im (dB) b (deg) F 4 (dB) I0e/N0 (dB) Rmc (km) 

>> 106.3 0 0 0 93.2 

112.3 0 0 1.0 88.1 

106.3 0 0 3.0 78.4 

100.3 0.46 2.7 1.7 72.5 

100.3 0 0 7.0 62.4 

3.3.5.2 Surface-Based PD Radar 

Calculations for pulsed Doppler (PD) radars may be carried out using summation 

of power from range ambiguities as in (3.11) and (3.12), but when several ambi-

guities are occupied by clutter it may be easier to apply the CW radar equations 

with a correction for the effects of duty cycle and pulse compression. The clutter, 

when averaged over all ranges in the pulse repetition interval (PRI), is given by 

(3.28)–(3.36) with the duty cycle Du = /tr included as a factor in the numerators. 

Note that Du is also applied to convert peak power Pt to in average power Pav, so 

the clutter energy varies with Du
2
 for a given peak power. The pulse compression 

ratio /n appears also in the denominator when a phase-modulated pulse is used.  

The clutter density as a function of range is as given in Figure 3.2, and is in-

tegrated over aliased responses as in Figure 3.4. The duty factor and the pulse 

compression ratio are included in the numerator of (3.36), leading to: 
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where tr is the PRI. The same factors and the ratio 
0 0e eC C  of clutter in the target 

gate to that averaged over the PRI appear in the range equations (3.39) and (3.40), 

to give 

 
 

1 4
2 4 2

0 0

2

00

39.2
 (m),  for 1,  0r rdr r m

mc b

ma e x mc n

h F F t I C C
R

I ND L R C

 
        

 (3.43) 

 
 

 

1 4
2 4 2

0 0

2 4
00

19.6
 (m) m ,  for 1

2

r rdr r m m

mc

ma e x mc u n

h F F t I C R C
R

I ND L R D C

 
       

 (3.44) 



76 Radar Equations for Modern Radar 

 

As in the CW radar case, the value of L(Rmc) within the brackets can be an ap-

proximation based on the range in thermal noise, or the result of the two-step iter-

ation used in the Blake chart. 

The pulsed Doppler radar has lower input clutter than a CW radar using the 

same antenna parameters and average power. The available improvement factor, 

however, is reduced by the aliasing of the clutter residue spectrum at intervals of 

the PRF, which adds multiple aliased components to the output of the target Dop-

pler filter [2, pp. 248–252]. The resulting clutter performance is not necessarily 

better than the CW radar. The major advantages of the PD radar are that a com-

mon antenna is used for transmitting and receiving, and target range may be 

measured by combining observations at different PRFs. 

3.3.6 Summary of Detection in Surface Clutter 

The steps in solving for detection range in an environment of surface clutter and 

thermal noise can be summarized as requiring calculation of the surface clutter 

reflectivity , using data from Chapter 9, and the following quantities that are 

functions of range Rc: 

 Ambiguous ranges Rci at which clutter competes with the target at range R, 

from (3.3), the corresponding areas Aci, from (3.18) or (3.19), and grazing an-

gles i from (3.16) or equivalent spherical-Earth equations. 

 Clutter pattern-propagation factor Fci, and atmospheric attenuation Lci for 

each area, using data from Chapter 8. 

 Clutter cross section from (3.23), and the resulting clutter input energy from 

(3.5) for clutter ranges Rci. 

 Clutter correlation loss Lcci, based on number of independent clutter samples 

available for integration from (3.7), using data on clutter velocity spread vi 

for each ambiguity from Chapter 9, and accounting for Doppler improvement 

factor when such processing is used. 

 Clutter distribution loss Lcdi from (3.8), based on Weibull spread parameter 

1  awi  5 from data in Chapter 9, modified as necessary for clutter-map pro-

cessing. 

 Effective clutter spectral density C0 e from (3.11), based on summation of ef-

fective clutter energies from all ambiguities, or from (3.33) for CW radar. 

 Total interference spectral density I0 e from (3.2). 

 Detection range Rmc from (3.12) for the general case, from (3.39) or (3.39) for 

CW radar, from (3.43) or (3.44) for pulsed Doppler, or from a graphical or 

root-finding method. 
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3.4 DETECTION IN VOLUME CLUTTER 

Volume clutter arises from precipitation or chaff within the radar resolution cell. 

The inclusion of energy from volume clutter follows the procedures given in Sec-

tions 3.1 and 3.2 and applied to surface clutter in Section 3.3. The effective spec-

tral density C0e for volume clutter is added to that of surface clutter when both are 

present at the detection range. 

3.4.1 Geometry of Volume Clutter 

The geometry of volume clutter is shown in Figure 3.6. The resolution cell is de-

fined by the antenna beamwidths, reduced by beamshape loss, and the range reso-

lution cell r by (3.14) or for CW radar by the integration of (3.33). 

At ranges where the cloud fills the radar beam, the volume Vc of the clutter in 

the resolution cell at range ambiguity i is  

  3  m
2

ci a ci e n

ci

p p

R R c
V

L L

  
  (3.45) 

where the lower and upper limits of the ambiguity index i are as defined in (3.3), 

depending on the location and radial dimension of the cloud. The horizontal cross-

range dimension of the cloud is usually assumed to extend beyond the azimuth 

beamwidth, but in elevation it extends between the minimum altitude hcmin (often 

the Earth’s surface) and a maximum altitude hcmax that depends on the origin of the 

scattering particles. When the elevation beam extends beyond those limits, the 

term Rcie/Lp of (3.45) is replaced by an effective cloud thickness: 

Rc

2

Lp

Radar
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Cloud of p
chaff

recipitation, 
 or  insects 

 

Figure 3.6  Volume clutter geometry. 
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where  is the elevation angle and b is the elevation of the beam axis. The upper 

and lower elevation limits of the clutter are functions of the altitude limits hcmax 

and hcmin, and range Rci of the clutter: 
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As the limits expand beyond the elevation beamwidth,   e/Lp. 

For a beam-axis elevation b < e/2 above horizontal, the beamwidth e in 

(3.45) is replaced by the fraction b + e/2 of the beam lying above the surface. 

The fraction of the beam directed at the surface may contribute to the volume clut-

ter energy through an increase in the pattern-propagation factor for the volume 

clutter, as will be discussed in Section 3.4.3. 

As with surface clutter, range ambiguities defined by (3.3) may contain vol-

ume clutter. The resolution cell volumes are proportional to R
2
ci, both within and 

beyond the target range R. As noted in Chapter 5, the meteorological radar equa-

tion [6, p. 74, Eq. (4.13)] contains the constant term /(8 ln2) = 1/L
2
p0 = 0.565, 

consistent with (3.45), where L
2
p0 is the two-dimensional beamshape loss for dense 

sampling (see Chapter 5). Literature in which this constant is given as /4 overes-

timates the volume by 1.4 dB because it substitutes the solid angle of a cylindrical 

beam with constant gain over an elliptical region for the beamshape loss that de-

scribes the off-axis reduction in antenna gain in both coordinates. 

3.4.2 Volume Clutter Cross Section 

The radar cross section of volume clutter in a resolution cell at range Rci is 

 2
m  ( )ci ci vV    (3.48) 

where Vci is the volume in m
3
 of the clutter cell at range Rci and v is the volume 

reflectivity of the scatterers making up the cloud, with dimension m
2
/m

3
. The vol-

ume reflectivity is a function of radar frequency as well as the physical properties 

of the scatterers, as described in Chapter 9. In the case of precipitation, insects, 

and chaff corridors, the cloud often extends over many resolution cells in all di-
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mensions. Self-defense chaff bursts initially are smaller, gradually expanding to 

larger volumes with decreased reflectivity per unit volume.  

3.4.3 Volume Clutter Energy  

The volume clutter energy is given by (3.4) and (3.5), and the effective value for 

multiple range ambiguities by (3.11). Thus we can write 
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where the terms with overbars are weighted averages over the cutter region. 

The pattern-propagation factor F
4
ci for volume clutter varies less than for sur-

face clutter. Where the beam is elevated above the horizon, only the pattern varia-

tion over the vertical dimension of the cell affects Fc, and this is included as Lp in 

one term of (3.45). When the surface is illuminated with significant gain, a strong 

lobing structure appears with elevation lobe widths /2hr. The pattern-propagation 

factor F
4
ci, when averaged over the vertical extent of the clutter, then increases the 

clutter energy by a factor 4 6 7.8 dBciF   , which is the average value of 

[2sin(2hr/)]
4
 over elevations 0 < 2hr/ < 2. Significant errors in estimates of 

detection range result when factors of this magnitude are ignored in applying the 

radar equation.  

Volume and surface clutter differ also because a polarization factor Fpc << 1 

may be obtained for precipitation through use of circular polarization (see Section 

10.1.1), and elevated clouds may extend far beyond the surface-clutter horizon, 

producing clutter in multiple ambiguities even when the intended targets are with-

in the unambiguous range. Surface clutter may have similar range extent when 

propagation ducts are present, but the problem is more common with high-altitude 

volume clutter. 
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3.4.4 Volume Clutter Detectability Factor 

The effect of wind shear on volume clutter causes the mean and spread of velocity 

to increase with range. Clutter correlation loss Lcc, described by (3.6) and (3.7), 

applies to volume clutter, but is smaller than for surface clutter because of the 

larger velocity spread v of volume clutter (see Chapter 9). The increasing spread 

reduces Lcc, even in the absence of MTI processing, causing the effective clutter 

spectral density to increase less rapidly with increasing range than would be pre-

dicted solely from the increasing volume in the resolution cell. The pdf of volume 

clutter is approximately Rayleigh, at least over range extents used in cell-

averaging CFAR, giving Lcd  1 in (3.8). The clutter detectability factor Dxc for 

volume clutter, given by (3.9), thus exceeds Dx for noise only by the clutter corre-

lation loss Lcc. 

3.4.5 Detection Range in Volume Clutter and Noise 

After evaluating clutter volumes, reflectivities, and propagation factors as func-

tions of the target range R, the effective clutter density can be found from (3.11), 

added to the noise density as in (3.2), and inserted as the interference spectral den-

sity I0e, replacing noise density N0 in (1.26), and used in (3.12) to find the maxi-

mum detection range in an environment of volume clutter and noise. As with sur-

face clutter, many terms on the right-hand side of this equation are range-

dependent, and Rmc must generally be found graphically or by root-finding. 

A special case in which an equation for detection range of a LPRF radar may 

be written in closed form applies when the following conditions apply: 

 No range-ambiguous clutter: Rc = R, Lc = L, and Frdrc = Frdr; 

 No surface-reflection lobing: Fc = F = 1; 

 Clutter loss Lcd = 1, and constant Lcc with varying range; 

 Improvement factor Im constant with range; 

 Clutter energy dominates the interference at the processor output: C0 e >>N0, 

I0 e = C0 e. 

Equations (3.45), (3.48), and (3.11) may then be combined to give 

    
 

 
 

2 2 2

0 0 0 03 2 2

2
 W/Hz ,  

4

av f t r v a e n pc rdr cc

e e e

t p m

P t G G c F F L
I C C N

R L L L I

    
  


 (3.51) 

From this and (1.26) we may write, for LPRF radar (no range ambiguity): 
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Note that the beamshape loss L
2
p appears in the numerator, while the correspond-

ing loss for the target is included within Dx in the denominator. In this derivation 

the polarization factors Fp and Fpc are retained because they are not range-

dependent. The antenna polarizations are sometimes chosen for rejection of pre-

cipitation: Fp >> Fpc. However, the other assumptions constrain the solution to a 

limited number of situations. 

A typical example to which this expression applies is shown in Figure 3.7, 

where the X-band radar described in Table 3.1 uses an LPRF waveform, looks 

through a cloud of 1-mm/h rain without MTI but with circular polarization for 

clutter rejection: F
2
pc = 0.01, F

2
p = 0.5. The curve for signal energy lies below that 

shown in Figure 3.2 because of the reduced polarization factor F
2
p for the target 

and increase attenuation in rain. The range scale is logarithmic to illustrate the 

linear dependence of target and clutter energy on R
4

 and R
2

, respectively. The 

closed-form (3.53) is applicable because the clutter spectral density at Rmc is some 

35 dB above noise at Rmc. 
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Figure 3.7  Typical target and volume clutter energy as a function of range, for LPRF radar with target 
on the beam axis, no MTI processing. The volume clutter fills the beam at all ranges. 
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In this example, no MTI improvement has been shown. It would obviously be 

advantageous to include MTI processing, which could provide about 15-dB clutter 

reduction (see Section 9.6.1), providing target detection near 50 km. 

3.4.6 Volume Clutter in CW and PD Radars 

Volume clutter in CW radars that use phase modulation to obtain range resolution 

n is described by the expressions given in previous section for pulse radar. The 

cross-range dimension of the resolution cell in azimuth is determined by the 

beamwidth, and in elevation either by the beamwidth or the cloud thickness, as in 

(3.46).  

In unmodulated CW radar, the range dimension of the clutter is the length of 

the path that lies within the cloud. Blake [3, p. 300, Eq. (7.18)] presents an expres-

sion using a triple integral (in range, azimuth, and elevation) to give the clutter 

energy for pulsed radar where v remains constant over a hemisphere, but the ele-

vation limits of the cloud are, in general, range-dependent. 

3.4.6.1 Volume Clutter Energy for CW Radar 

Useful insight into CW radar performance in volume clutter may be gained under 

the assumption that the cloud extends beyond the radar beam in both angle coor-

dinates, for which case the surface-clutter expressions (3.29)–(3.33) can be modi-

fied for volume clutter to yield 
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Consider again the X-band radar described in Table 3.1, operating in the rain-

fall rate of 1 mm/h assumed for Figure 3.7, but with a CW waveform and circular 

polarization. The clutter density resulting from (3.55) is shown in Figure 3.8. The 

peak density occurs at range Rff, and most of the clutter energy comes from the 

volume within  6Rff in front of the antenna. 

The clutter reflectivity v is usually assumed constant within the cloud, and is 

included in Kcv, but may be moved within the integral of (3.56) if it varies in some 
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known way with range. Atmospheric attenuation is included within the integral 

because it may become significant for large Rcmin. As with the surface-clutter 

analysis, the factors Frdr and Lcc are assumed unity for CW radar and omitted from 

the equations. 

The range limits of the integral depend on the location and extent of the 

cloud. The minimum range Rcmin approaches zero when the cloud envelopes the 

radar, but the antenna beam is not fully formed within the far-field range of the 

antenna, given by 
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Here w and h are the width and height of the aperture and K  1.2 is the beam-

width constant. Antennas separated horizontally by w or vertically by h are re-

quired in most CW radars to avoid direct coupling between the transmitter and 

receiver. Hence the two beams begin to overlap at  Rff /2, and the gain product 

GtGr is realized only beyond Rff. 

To account for the reduction in the antenna gain product at short range, the 

volume clutter pattern-propagation factor can be expressed as 

 c

c

c ff

R
F

R R



 (3.58) 

Redefining the terms Lc and Frdr to be weighted averages over the limits of 

integration, they may be placed outside the integral, which becomes 
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Figure 3.8  Volume clutter density as a function of range for CW radar enveloped in 1-mm/h rain, 

plotted for beamwidths a = e = 1.4,  = 0.03m, Rff = 150m. 
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The final approximation in (3.59) applies where the clutter cloud envelopes 

the radar. The atmospheric attenuation Lc  1, and input clutter energy is then 
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The effective clutter energy is 0 0 ,e mC C I  where mI  is the weighted average 

improvement factor over the clutter region. The clutter energy is independent of 

antenna parameters other than the polarization factor.  

3.4.6.2 Detection Range for CW Radar in Volume Clutter 

Combining (1.26) and (3.58), the signal-to-clutter energy ratio can be written for 

the general case as 
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  (3.61) 

Note that the terms within the brackets are independent of target range R.  

As with surface clutter, there are two special cases for which closed-form ex-

pressions can be written. Where clutter residue is dominant, C0e >> N0, we solve 

for the range Rmc at which E/C0e = Dx to obtain 
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(See the footnote under (3.40) regarding evaluation of L(Rmc) in these expres-

sions.) 

The final approximation in (3.62), for clutter enveloping the antenna, can be 

expressed directly in terms of the radar parameters by substituting (3.57) to obtain 
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If Im= 50 dB in our example radar, this gives Rmc = 27.3 km. The variation of de-

tection range with the inverse squares of the two beamwidths results from the 

combination of changing clutter volume and far-field range, the latter affecting the 

response to nearby clutter. 

The closed-form solution for the second case is based on the assumption that 

C0 e = N0: 
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 (3.64) 

The improvement factor required for this case is Im = C0/N0, which from (3.60) is 
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For our example, this gives Imreq = 69.2 dB, Rcm0 = 65.4 km. 
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3.4.6.3 Example of CW Radar in Rain 

For a surface-based X-band CW radar with parameters listed in Table 3.1, with 

circular polarization in 1-mm/h rainfall rate, the received clutter energy given by 

(3.60) is C0 = 9  10
14

 J. An improvement factor Im = 60 dB would reduce the 

effective clutter spectral density to C0 = 9  10
20

 W/Hz, compared to thermal 

noise with density N0 = 1.4  10
20

 W/Hz. The resulting C0 e/N0 = 8.2 dB is high 

enough to permit (3.63) to be used to find an approximate range: 
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The accurate range is slightly less, because 8.2 dB  is not quite high enough to 

allow noise to be neglected. The result is independent of the beam elevation, be-

cause the clutter arises within a few hundred meters from the antenna. The results 

given above are based on Im = 60 dB, F
2
pc = 0.01, and F

2
p = 0.5, for circularly po-

larized antennas having the same sense (e.g., right-hand polarization for both 

transmitting and receiving). Much larger Im values are generally available in CW 

radar designed for use against aircraft targets: values in excess of 100 dB were 

shown necessary in Section 3.3.5 for rejection of surface clutter. That level of 

Doppler performance would preserve the thermal-noise detection performance 

when operating in rain, even without the use of circular polarization. 

3.4.6.4 Volume Clutter Energy for PD Radar 

Volume clutter energy for pulsed Doppler radar may be found using (3.49), but 

when several range ambiguities are occupied by clutter it may be easier to apply 

the CW radar equations with a correction for the effects of duty cycle and pulse 

compression. The clutter, when averaged over all range gates in the pulse repeti-

tion interval (PRI), is given by adding duty cycle Du as a factor in the numerator 

of Kcv in (3.28) and (3.56)–(3.58). The pulse compression ratio /n is applied to 

the denominator of Kcv when a modulated pulse is used. The factor of 2 in the nu-

merator of (3.57) is omitted in calculating the far-field range of PD radar anten-

nas, because the transmitting and receiving beams are formed by the common 

antenna at a range Rff = wh/ and the beams coincide at all ranges. The resulting 

expression for average PD volume clutter energy, when the cloud envelopes the 

radar, becomes: 
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This average clutter energy is added to the noise spectral density to obtain I0e for 

use in calculating an average detection range from (3.12).  

The clutter density as a function of range is shown in Figure 3.7 with adjust-

ment for duty cycle, pulse compression, and aliasing at the unambiguous range Ru. 

The clutter competing with the target varies about that average, as shown in Fig-

ure 3.9. The maximum value lies in the first gate that includes the range Rff where 

the beam is fully formed. Clutter in that gate is  65 dB above noise level, requir-

ing an improvement factor Im > 75 dB to avoid reduction in target detectability.  

3.4.7 Summary of Detection in Volume Clutter 

The steps in solving for detection range in an environment containing volume 

clutter and thermal noise can be summarized as requiring the calculation of the 

following factors: 
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Figure 3.9  Volume clutter input energy levels in HPRF PD radar with Du = 10%, under the same 

conditions as for the CW radar of Figure 3.8.  
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 Ambiguous ranges Rci at which clutter competes with the target at range R, 

from (3.3), and the corresponding volumes Vci from (3.45). 

 Volume clutter reflectivity vi for each area, using data from Chapter 9. 

 Volume pattern-propagation factor Fci, integrated over the resolution cell, and 

atmospheric attenuation Lci for each volume, using data from Chapter 8. 

 Clutter cross sections from (3.48) and the resulting clutter input density from 

(3.5) for clutter ranges Rci. 

 Clutter correlation loss Lcci, based on number of independent clutter samples 

available for integration from (3.6), using data on clutter velocity spread vi 

for each ambiguity, from Chapter 9, and accounting for Doppler improve-

ment factor Imi when such processing is used. 

 Effective clutter spectral density C0 e from (3.11), with Ccd = 1, based on 

summation of effective clutter energies from any ambiguities, from (3.56) for 

CW radar or from (3.66) for PD radar. 

 Effective interference spectral density I0 e from (3.2). 

 Detection range Rmc from (3.12). 

When both surface and volume clutter are present at the same range, the cal-

culation of Doppler improvement Imi must consider the differing velocities of the 

two clutter components. The effective clutter spectral density components C0e 

from the two clutter sources are added to that of noise to find detection range.  

3.5 EFFECTS OF DISCRETE CLUTTER 

Two types of discrete clutter cause problems in radar that differ from the surface 

and volume clutter discussed in the previous sections:  

 Echoes from moving objects such as birds or land vehicles;  

 Large echoes from fixed objects on the surface, primarily manmade struc-

tures.  

Radial velocities of moving objects may lie in the response band of Doppler pro-

cessors and be passed to the output as targets, overloading the traffic capacity of 

human operators or track-while-scan channels. Echoes from large fixed objects 

may exceed the cancellation capability of the signal processor, producing visible 

clutter or alarms that impede detection and tracking of desired targets. The dis-

crete nature of these echoes prevents their rejection by cell-averaging CFAR de-

tectors, and other means of rejection may raise the threshold to levels that sup-
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press target detection in several resolution cells including and surrounding that 

containing the strong clutter. 

Models of both types of discrete clutter are discussed in Chapter 9, along with 

processing methods for its rejection. The effect of discrete clutter is not measured 

by a reduction in maximum detection range Rm on the desired targets. Instead, if 

not adequately suppressed in the signal processor, the false-alarm probability is 

increased, placing a burden on subsequent data processing. Adequate clutter sup-

pression is inevitably accompanied by decreased target detection probability in 

some fraction of the coverage area, caused by increased loss of the signal in the 

suppression process.  

3.5.1 Effect of False Alarms 

In a track-while-scan or multifunction radar system, the data processor assigns a 

tracking channel to attempt track initiation at the location of an alarm that is not 

correlated with an existing track file. This channel is occupied for several scans 

after the alarm. For reliable track initiation, the number of tracking channels nch in 

the data processing system must be increased beyond the number ntr of actual tar-

gets present: 
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where 

ntin =  number of track initiation scans following a noise alarm; 

nr =  number of range cells within Rm;  

naz = number of azimuth cells in the scan sector Am;  

Pfa =  false-alarm probability for noise;  

ntic =  number of track initiation scans following a clutter alarm; 

np =  number of unsuppressed clutter points;  

Ac =  area of the resolution cell given by (3.18); 

AmR
2
m/2 =  surface area covered by scanning an azimuth sector to range Rm.  

The first term on the right-hand side of (3.67) is the number of target tracks ex-

pected, the second is the average number of tracking channels consumed in at-

tempts to validate and acquire track on noise alarms, and the third is the average 

number of channels consumed by similar attempts on discrete clutter. When track-

ing at out to an instrumented range Rinst > Rm is desired on targets having large 

RCS, the range Rinst replaces Rm in (3.67).  

3.5.2 Required Noise False-Alarm Probability 

To avoid excessive burden on the data processor, Pfa is normally set so that the 

second term in (3.67) is a small fraction of the first. For example, if the maximum 
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number of targets expected is ntr = 100, Pfa is set to make the second term < 10 

channels. Noise alarms are uncorrelated and widely scattered in the search sector, 

so the number of track initiation attempts following a noise alarm can be limited 

to ntin = 2. Thus, in our example, about five noise alarms are allowable per scan: 

nrnazPfa  5. In a typical search radar scanning 360, nr = 2,000 and naz = 200, giv-

ing nrnaz = 4  10
5
 resolution cells in the search sector, and requiring Pfa  5/nrnaz 

= 1.25  10
5

. Use of higher resolution in search requires reduction in Pfa, increas-

ing the required signal-to-noise ratio. 

3.5.3 Requirements for Rejection of Discrete Clutter  

The third term in (3.67) must be controlled by design of the signal processor. 

Since clutter alarms are correlated from scan to scan, attempted track initiation or 

recognition of a fixed echo typically requires ntic = 5 scans after a clutter alarm. 

Accordingly, np  2 clutter alarms per scan are permitted, if the track processor 

load for discrete clutter is to be less that 10 channels.  

An important point in design of track-while-scan and multifunction radar sys-

tems is that every detectable target within the surveillance coverage must either be 

assigned a track file or placed in a clutter map. Otherwise there will be repeated 

alarms requiring attempts at track initiation. Bird statistics are such that most de-

tections result from upward fluctuations of echoes whose average is too low to 

provide reliable tracking or mapping. Only discrimination using differences be-

tween target and bird RCS, altitude, or true velocity can avoid random false 

alarms from loading the data processor. Shrader [7, p. 2.87] describes a sensitivi-

ty-velocity control (SVC) system that combines measurements of RCS and true 

(unambiguous) radial velocity to perform this discrimination, using PRF diversity 

over several CPIs. He suggests that it is most applicable to radars operating below 

1.4 GHz. For radar frequencies in the UHF or lower bands, most birds lie in the 

Rayleigh region where RCS varies as f0
4
, reducing the number of detectable ob-

jects. Operation in these low bands also discriminates against low-altitude objects, 

but these may include targets as well as birds and land vehicles. 

Data from Table 9.3 show that metropolitan areas have fixed clutter sources 

exceeding +40 dBsm with densities up to  0.2 per km
2
. The maximum range hav-

ing such density is typically Rcmax = 20 km. The area within 20 km over a 360 

scan is some 1,250 km
2
, and so 250 clutter points exceeding +40 dBsm may be 

expected. Virtually all of these must be prevented from sending alarms to the data 

processor.  

Suppression of fixed discrete clutter cannot be provided by cell-averaging 

CFAR threshold control, since the cells containing the clutter are scattered over 

the search area. Suppression must be provided by some combination of velocity 

discrimination and clutter mapping in the signal processor, as described in Section 

9.6.5. Table 9.3 is based on data gathered prior to deployment of wind turbines 
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(Section 9.4.4), which combine large RCS, fixed locations, and large Doppler 

shifts. Clutter mapping appears to offer a solution to this type of fixed clutter. 

3.5.4 Summary of Discrete Clutter Effects 

The is no equation that describes the effect of discrete clutter on radar detection 

range. Discrete clutter controls the design of the signal processor, and the resulting 

processor losses are included in calculating the effective detectability factor Dx. 

High-resolution clutter maps offer a means of suppressing strong fixed clutter 

points at the expense of suppressing some fraction of target detections. To the 

extent discrete clutter passes the signal processor, the subsequent data processor 

must be designed to handle tracking loads greater than the number of targets actu-

ally present in the surveillance area, to avoid saturation that would result in failure 

to respond to actual target detections. 

3.6 SIDELOBE CLUTTER 

The ratio of mainlobe-to-sidelobe antenna gain is normally high enough that 

sidelobe clutter at the receiver input is negligible, relative to the mainlobe clutter 

discussed in previous sections. There are two cases, however, in which sidelobe 

clutter may become important: 

 When the improvement factor for mainlobe clutter is much larger than that 

available for sidelobe clutter, due to relative motion of the radar and clutter; 

 When the ratio of two-way mainlobe to sidelobe gain is insufficient to place 

the total sidelobe clutter power below that of the mainlobe. 

Equations applicable to these situations are discussed here for both surface 

and volume clutter. 

3.6.1 Surface Clutter in Sidelobes 

The surface area contributing to clutter in the azimuth sidelobes is much larger 

than that given by (3.18), because the sidelobe sector (including backlobes) ex-

tends over (  a)   radians from the beam axis. The clutter area Ac is a ring 

of radius Rccos centered on the surface immediately below the radar. The area is 

larger by a factor  2Lp/a than that within the mainlobe: 
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The two-way pattern-propagation factor F
4
cs applicable to clutter within this area is 

reduced by the ratio (G/Gs)
2
 relative to F

4
c for mainlobe clutter, where Gs is the 

power gain of the azimuth sidelobes, averaged over the 2 radian ring. The far-

sidelobe gain for a typical antenna is Gs   10 dB relative to an isotropic antenna. 

A typical result, for a fan-beam surveillance radar antenna with mainlobe gain 

G = +30 dB and a = 2, is: 

  Acs/Ac = 360/a = 180 = +22.6 dB; 

  F
4
cs/F

4
c = 10

8
 = 80 dB; 

  csF
4
cs/cF

4
c = 1.8  10

6
 = 57.4 dB. 

This would justify neglecting the sidelobe clutter for the typical antenna in cases 

where the mainlobe improvement factor Im < 57 dB. For land-based radars, the 

spectral spreading of the sidelobe and mainlobe clutter would be equal, and both 

would be reduced by Doppler processing. 

3.6.1.1 Sidelobe Clutter in Moving Pulsed Doppler Radars 

Radars using pulsed Doppler processing often achieve mainlobe clutter improve-

ment factors Im > 60 dB, using rejection notch widths that encompass the velocity 

spread of mainlobe clutter. When the velocity of the radar over the surface ap-

proaches or exceeds the notch width, however, Im drops rapidly toward 0 dB, and 

sidelobe clutter may dominate the interference. This is the situation in shipboard 

radars using low-PRF pulsed Doppler waveforms (e.g., the moving target detec-

tor, MTD), and in airborne radars using pulsed Doppler waveforms at any PRF.  

In the case of airborne MPRF and HPRF radars, the sidelobe-clutter problem 

is exacerbated by the presence of multiple range ambiguities, some at ranges 

much less than that of the target. Spectra of clutter in such radars appears as 

shown in Figure 3.10. For the MPRF radar, clutter occupies the entire velocity 

space, and detection of targets outside the mainlobe region is possible only if the 

sidelobe clutter spectral density is below the energy of the target by the required 

detectability factor Dx. With the HPRF waveform, although the clutter level is 

higher (because of the larger number of range ambiguities and their shorter range), 

a clear Doppler region exists in which detection above the noise level is possible. 

3.6.1.2 Sidelobe Clutter in Low-Gain Antennas 

Radar systems can be designed in which a broad-beam transmitting antenna illu-

minates a large area on the surface, within which the gain of narrow receiving 

beams and integration over long periods compensates for loss of transmitting gain. 

In the limit, the transmitting antenna pattern may be uniform in azimuth, and 

sidelobe clutter in the receiving beam is reduced only by the one-way sidelobe 

ratio G/Gs. In this case, the calculation of the ratio of sidelobe to mainlobe clutter, 
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for the typical receiving antenna used in the example of the previous section, 

would have the following values: 

  Acs/Ac = 360/a = 180 = +22.6 dB; 

  F
4
cs/F

4
c = 10

4
 = 40 dB; 

  csF
4
cs/cF

4
c = 0.018 = 17.4 dB. 

If the radar were moving with respect to the surface, the clutter improvement fac-

tor for the sidelobe clutter might well be insufficient to keep that clutter below the 

mainlobe clutter at the processor output, and application of (3.4) and (3.5) would 

require that ciF
4
ci include both the mainlobe and sidelobe clutter areas, with dif-

ferent improvement factors applied to these two components in (3.10) 

3.6.2 Volume Clutter in Sidelobes 

The volume contributing to clutter in the antenna sidelobes is much larger than 

that given by (3.45), since the sidelobe sector (including backlobes) extends over 

the entire hemisphere of 2 steradians about the beam axis (or 4 steradians for 

airborne radars). Precipitation clutter in the upper elevation sidelobes of surface-

based radars is limited in range by the upper altitude limit hcmax of the cloud, be-

low which the volume Vc is: 
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Figure 3.10  Surface clutter spectra in airborne pulsed Doppler radars: (a) medium PRF, (b) high PRF. 

(From [2]). 
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where it is assumed that the cloud extends over all azimuths from the radar to 

range Rc. 

The ratio of sidelobe clutter volume to that of the mainlobe is 
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For example, for a pencil-beam antenna with a = e = 2 = 0.035 rad, if we as-

sume hcmax = 3 km and Rc = 30 km, the volume ratio is 

 Vcs /Vc = hcmax L
2
p0 /Rcae = 620 = +27.9 dB. 

The mainlobe gain of this antenna is G = 6,700 = +38.3 dB, and for an rms 

sidelobe level Gs   10 dB relative to an isotropic antenna, we find: 

  F
4
cs /F

4
c = 10

8
 = 96.5 dB; 

  csF
4
cs /c F

4
c = 1.15  10

6
 = 59.4 dB. 

This justifies neglecting the sidelobe clutter for typical pencil-beam antennas, ex-

cept in cases where the mainlobe clutter is subject to an improvement factor that is 

more than 59 dB greater than available for the sidelobe clutter. The velocity spec-

trum of precipitation clutter in sidelobes, with wind speed vw, would extend over 

vw and would not be expected to permit Im as great as for mainlobe clutter. 

With a transmitting beam that has uniform gain in azimuth, the pattern-

propagation factor ratio becomes 48.3 dB, and a system with Im > 17 dB would 

have to consider sidelobe volume clutter if its velocity spread placed it outside the 

clutter notch. 

Chaff clutter would not normally extend over the entire sidelobe region, but if 

it did the procedure would be the same as for precipitation. 

3.7 DETECTION IN NOISE JAMMING 

3.7.1 Objective and Methods of Noise Jamming 

Noise jamming is intended to mask the target, preventing its detection. Its effect is 

evaluated by including in the radar equation the effective jamming spectral densi-

ty J0 e as a component of the interference I0 e.  
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3.7.1.1 Support Jamming 

Noise jamming is primarily a support jamming technique [8, p. 11], in which the 

jammer is carried by a vehicle separated from the target to be protected. The jam-

ming vehicle can be located at a range Rj from the victim radar beyond that of the 

target: Rj > R (stand-off jammer, SOJ); near the target: Rj  R (escort support 

jammer, ESJ); or within the target range: Rj < R (stand-in jammer). The jammer is 

usually separated in angle from the target to lie in the sidelobes of a radar beam 

that illuminates the target. Jammer power is generally such that the radar is unable 

to measure the range of the jamming vehicle. Accurate angle data on the jammer 

are available, however, and these may be combined with data from other radar 

sites to locate the jammer by triangulation. 

The support jammer is normally assigned to protect targets from several 

search or fire control radars, and hence must cover more than one radar frequency, 

often in different radar bands. To ensure this protection, barrage noise jamming 

that covers the tunable bandwidths of all victim radars is commonly used. When 

the available jammer power is insufficient for this mode of operation, the jammer 

may be controlled by an intercept receiver that measures the radar waveforms ac-

tually in use and assigns spot jamming that covers the bandwidth B of each radar 

signal. This mode requires periodic look-through periods [8, pp. 133–135] in 

which the jamming is discontinued long enough to intercept new or retuned radar 

threats. The so-called smart jammer also uses angle data from the intercept re-

ceiver system to direct high-gain jamming beams at each victim, reducing the 

power requirement while ensuring penetration of the radar sidelobes. 

3.7.1.2 Self-Screening Jammer (SSJ) 

Noise is not normally effective for self-screening, because it ensures detection of a 

target of interest along the jamming strobe produced by the large increase in noise 

as the mainlobe of the radar scans past the jammer. Even without range data from 

an individual radar, strobe angles can be used by the defense system to engage 

jamming vehicles within range of a weapon (e.g., using home-on-jam missiles).  

An SSJ approach using noise is cover-pulse jamming [8, p. 145; 9, p. 227]. 

The noise power is increased gradually, at a time within the victim radar PRI that 

precedes arrival of the radar pulse at the target, to a level that increases the radar 

CFAR threshold (or AGC level) to suppress the target echo. The level is decreased 

again after arrival of the pulse. When properly implemented, the radar operator (or 

automatic detection circuitry) may be unable recognize that jamming has oc-

curred, precluding generation of a jam strobe that provides angle data on the jam-

ming vehicle. The jammer must be able to intercept the radar signal, measure the 

PRI, and respond at a time and with a noise burst of duration adequate to cover 

any variation in PRI from that previously intercepted. Thus the technique requires 

knowledge of the victim radar PRI, and is applicable when radars depend for de-
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tection on integration of multiple pulses during a dwell, or when single-pulse 

dwells at almost equal intervals occur during scanning or multiple-target tracking. 

3.7.2 Radar Equations for Noise Jamming 

The radar equation can be used to determine the range at which a target can be 

detected in a given jamming environment, or the jammer power required to defeat 

detection at a given range.  

3.7.2.1 Description of Jammer 

The noise jammer is characterized by the following parameters: 

Pj =  transmitter power in W; 

Gj  =  jammer antenna gain; 

Qj  =  jamming noise quality factor; 

Fj =  jammer-to-radar pattern-propagation factor; 

Fp j =  jammer-to-radar polarization factor; 

Bj =  noise bandwidth in Hz; 

Lt j = jammer transmission line loss; 

Rj =  jammer range from radar in m; 

L j =  jammer-to-radar (one-way) atmospheric attenuation; 

Llens j = jammer-to-radar (one-way) lens loss. 

The effective radiated power (ERP) of the jammer is given by 

 ERP j j t jP G L  (3.71) 

ERP is a rough measure of jammer capability, but the other parameters listed must 

be known for a quantitative evaluation the effectiveness. An effective radiated 

noise power ERNP that accounts for the quality and polarization factors can be 

defined: 

 

2
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j j j p j

t j

Q P G F

L
  (3.72) 

The jamming noise quality factor Qj describes the ability of the jammer emis-

sion to affect target detection. Ideally the noise jammer waveform is white Gauss-

ian noise covering the radar signal bandwidth B, and J0 e = J0. Transmission of true 

Gaussian noise requires that the peak power rating of the final amplifier exceed Pj 

by 7–10 dB [8, pp. 129–133]. To economize on size and weight, the amplifier is 

normally operated in the saturated mode, and frequency modulation over Bj > B is 

used to approximate the effect of Gaussian noise in the victim receiver. The effec-
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tive noise density is then given by Q jJ0, where typical values of Q j are in the 

range 0.3–0.6 (5 to 2 dB). 

The jammer-to-radar pattern-propagation factor Fj is the ratio of the jamming 

field amplitude produced at the radar antenna to the amplitude that would be pro-

duced if the radar were on the axis of the jammer antenna beam in the absence of 

reflection or obstruction by the jamming platform or its surroundings. The product 

GjF j
2
 thus represents the jammer antenna power gain in the direction of the radar. 

Except in the smart jammer with directional response along the measured angle of 

intercepted signals, the beamwidth of the jammer antenna must be broad enough 

to cover all the assigned victim radars, and the antenna must have a clear path in 

the direction to the radar. Gains of 3–5 dB are typical, implying broad beams for 

which Fj falls off slowly with off-axis angle.  

The jamming received by the radar antenna depends on the product 

GjF j
2
Gr F r

2
 of the effective jammer and radar antenna gains along the jammer-to-

radar path, where the radar receiving pattern-propagation factor Fr, introduced in 

(1.16), describes departure from the on-axis, free-space receiving antenna gain. 

The effect of sidelobe cancellation (SLC) or adaptive array nulling in the radar is 

to reduce the receiving voltage gain pattern that enters into Fr. Ideally this will 

decrease Fr to place the jamming at or below the level of thermal noise. Practical 

SLC implementation limits the reduction to 15–20 dB relative to the basic 

sidelobe level of the antenna. 

The polarization factor Fpj is the ratio of received jamming voltage to that of 

an antenna to which the jammer is matched. Among several radars in a band, more 

than one receiving polarization may be used. To avoid encountering a radar that is 

insensitive to the polarization of the jammer, the jammer antenna polarization is 

typically circular, or linear at 45 from the vertical. The resulting polarization 

factor is F
2
pj = 0.5 = 3 dB for any linearly or circularly polarized radar antenna. If 

the known types of victim radar antennas include circular polarization (e.g., for 

rain rejection), using the 45 linearly polarized jammer antenna option would 

avoid possible orthogonal polarization. 

The jamming bandwidth Bj is determined by the assigned mission. For bar-

rage jamming, it is typically 5%–10% of the center frequency of the assigned ra-

dar band, while for spot jamming it is slightly greater than the bandwidth B of the 

intercepted signal, to allow for errors in measurement. 

The one-way atmospheric attenuation and lens factor for the jammer are cal-

culated by methods described in Chapter 7, using one-half the decibel values cal-

culated for the two-way radar-target path at the same range. 

3.7.2.2 Jamming Contribution to Interference 

The jamming power density at the radar antenna terminal is: 
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The jamming noise quality expresses the effectiveness of the jamming wave-

form in interfering with radar detection, relative to white Gaussian noise. The ef-

fective jamming power density is 
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This density is added to other interference terms in (3.2) to evaluate the radar de-

tection range using any of the radar equations developed for the thermal noise 

environment. However, if only thermal and jamming noise are present at the re-

ceiver input within the range interval in which detection is obtained, it is conven-

ient to express the jamming as an equivalent temperature Tj [3, p. 29], given by 
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In the presence of one or more jammers, 1, 2, … i, the system input noise Ts in the 

radar equation is replaced by 

   (K)s s ji

i

T T T    (3.76) 

The maximum detection range with the jamming present is denoted by Rmj, replac-

ing Rm while Ts replaces Ts in (1.26): 
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This is called the burnthrough range against the noise jammer. 

3.7.3 Examples of Noise Jamming  

3.7.3.1 Barrage Jamming  

Consider the barrage jammer parameters listed in Table 3.3, operating at Rj = 150 

km against the example radar of Table 3.1, several of which may lie in the operat-
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ing area and be assigned as victims for the jammer. The targets to be protected by 

the jamming have 1-m
2
 RCS, and in the absence of jamming are detectable with 

Pd = 50% at Rm = 93 km from the radar, where the single-sample SNR = Dx  20 

dB. It is desired to find the number of jammers required mask these targets at 

Rmj = 40 km from the radar. The pattern-propagation factor Fj = 25 dB shown in 

the table results from jamming through major radar antenna sidelobes, with some 

allowance for radars that are not on the axis of the jammer antenna mainlobe. No 

sidelobe cancellation is assumed. 

Table 3.3  Example Barrage Jammer 

Radar frequency band X-band  Radar tunable bandwidth  500 MHz 

Transmitter power Pj 1 kW  Jammer antenna gain Gj 10 dB 

Jammer transmission loss Ltj 1.0 dB  Jammer ERP 8 kW 

Noise quality factor Qj 2 dB  Jammer polarization factor F 2
pj  3 dB 

Jammer ERNP 2.5 kW  Pattern-propagation factor F  2
j 25 dB 

Noise bandwidth in MHz, Bj 500 MHz  Jammer range Rj 100 km 

Atmospheric loss Lj 0.8 dB  Lens factor F 2
lens j 0.1 dB 

Screening range Rmj 40 km    

The first step is to determine from (1.26) the noise temperature required to 

reduce the detection range from Rm = 93 km to Rmj = 40 km: 
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 (3.78) 

where Tj /Ts is given by the fourth power of the range ratio, multiplied by the ratio 

of atmospheric and lens losses for the radar at Rm to those losses at Rmj. The input 

noise temperature Ts = 1,000K in this example must be increased by a factor of 

37 = 15.5 dB to obtain the range reduction factor of 93/30. The required jamming 

temperature can be compared to the temperature for a single barrage jammer of 

Table 3.3, given by (3.75): 
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Four jammers are required to provide adequate masking. If the jammers are car-

ried by aircraft orbiting on a racetrack course at Rj = 100 km with selectable an-

tennas on either side of each aircraft, five aircraft and jammers would be required, 

four to maintain the screen while a fifth performs a 180 turn to maintain its orbit. 

The high power and number of jammers shows the problem in barrage jamming of 

multiple radars. 

3.7.3.2 Spot Jamming  

Spot jamming based on signal intercepts from periodic look-through is an option, 

because the victim radars used as in the example in the preceding section require 

multiple-pulse integration for detection. The jammer parameters of Table 3.3 

would apply, except that emission would be concentrated in several narrow bands 

(e.g., 10 MHz each) identified by the intercepts. If there were five such bands, the 

total bandwidth would be Bj = 50 MHz instead of 500 MHz, increasing the jam-

ming density by a factor of 10: 

 Tj1 = 10
5
K  

The screening for a single 1-kW jammer would be effective to range Rmj  31 km, 

or Pj = 370W would suffice, assuming that the jammer antenna could cover con-

tinuously the azimuth sector occupied by the radars.  

Spot jamming becomes difficult if each radar uses frequency diversity to 

force the jammer to cover many spot frequencies in the band. Pulse-to-pulse fre-

quency agility forces a return to barrage jamming, but precludes implementation 

of MTI by the radars. This suggests the advantage of combining passive ECM 

(chaff) with active jamming, to force the radar to use bursts of coherent pulses 

subject to interception and spot jamming. 

3.7.3.3 Self-Screening Noise Jamming  

Relatively low powers provide self-screening on the axis of the radar mainlobe 

(Fj = 1). The effect of the 1-kW jammer in Section 3.7.3.1 can be produced with 

3W jammer power in the mainlobe. A special range equation gives the 

burnthrough range for this case: 
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where n is the number of coherent outputs integrated following envelope detec-

tion, and Bj  B. This equation is derived from (1.26) by replacing Ts by Tj from 

(3.75) and setting Rbt = Rmj = Rj. 

Using the example jammer from Table 3.4 for self-screening, the burnthrough 

range of the example radar is 
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A smaller jammer with Pj = 10W and Gj = 3.2 = 5 dB still achieves a burnthrough 

range of 31 km, adequate for most operations against the example radar. These 

ranges are obtained with barrage noise covering 500 MHz.  

The preceding calculations apply also to a self-screening noise jammer using 

the cover-pulse technique. The noise power Pj is the level after the jammer has 

reached its full output. In a typical case, the duty cycle of such a jammer would be 

 10% for each radar being jammed, and the average power would be correspond-

ingly lower. This type of jammer adjusts its output power based on the level of 

received pulses in order to minimize the chances that a jam strobe would be gen-

erated. If implemented using a digital RF memory (DRFM), the noise bandwidth 

would also be restricted to spot jamming centered on the radar frequency, making 

it possible to use very low power levels that would further reduce the probability 

of jam-strobe generation.  

3.8 DECEPTIVE JAMMING 

In deceptive jamming (also called deceptive ECM or DECM), the emissions are 

designed to appear as radar echoes at locations where no target actually exists. 

The purpose is to introduce confusion into the radar system and the network that 

uses the radar data, and possibly to saturate the data processor to impede or pre-

vent reliable tracking of actual targets. There are two types of deceptive jammers 

[9, p. 86]:  

Transponder jammers generate noncoherent returns that emulate the temporal characteristics 

of the actual radar return. Repeaters generate coherent returns that attempt to emulate the am-

plitude, frequency, and temporal characteristics of the actual radar return.  

The repeater jammer has become the preferred method for creating synthetic tar-

gets that are realistic enough to pass from the radar processor into the data stream. 
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This type of jammer includes an intercept receiver, a memory to store features of 

the radar waveform, and a modulated transmitter in which the radar waveform is 

regenerated with time delays and Doppler shifts that correspond to false target 

positions and velocities.  

Deceptive jammers are used extensively against tracking radars that are ele-

ments of a fire-control system. Their use in this application is designed to prevent 

the fire control radar from locking on the target, or to break lock if the radar has 

already locked on. A number of sophisticated techniques are available for this 

purpose, the success of which generally requires the transmission of the selected 

jamming waveform at high very jamming-to-signal ratios. The evaluation of the 

effectiveness of this type of jamming does not generally lend itself to analysis, and 

testing using the actual radar and jamming equipment (or hardware simulators) is 

usually required. 

The current technology for waveform storage is the digital RF memory 

(DRFM). The operation of this device is described in [9, Chapter 5], and will not 

be repeated here. The state of the art has advanced steadily, providing the ability 

to store and regenerate most radar signals with adequate accuracy and with con-

trollable time delays and Doppler shifts. The accompanying intercept receiver is 

also implemented digitally [10].  

A significant challenge to repeater jamming is the presence of multiple radar 

signals that overlap in time and have large time-bandwidth products. This causes 

cross-products to appear in the jammer output when overlapping signals are pro-

cessed through nonlinear circuits in the repeater. 

3.8.1 Range Equations for Deceptive Jamming 

Deceptive jammers operate by responding to individual pulses received from the 

radar, with time delay, Doppler shift, or modulations that prevent proper operation 

of the radar or interpretation of its data. The applicable range equations are based 

on single-pulse peak power level rather than energy levels over a CPI.  

3.8.1.1 Transponder Equations 

A transponder is used to generate false targets in a radar that uses noncoherent 

integration (as opposed to a pulsed Doppler process). The transponder response is 

triggered by an incoming pulse from the radar, but is generated by an RF source 

that does not maintain phase coherence with the received pulse. The transponder 

is characterized by the following parameters: 

Gj = jammer antenna gain; 

Fpj = jammer-to-radar polarization factor; 

Fj = jammer-to-radar pattern-propagation factor; 

Flens j = jammer-to-radar (one-way) lens factor. 
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Smin j = transponder sensitivity in W;
7
 

Pj = peak response power in W; 

Lj = transmission or reception line loss; 

Lj = jammer-to-radar (one-way) atmospheric attenuation; 

It is assumed here that the antenna gain and patterns and the line losses are identi-

cal for transmitting and receiving, and that the response pulsewidth is the same as 

that of the radar transmission. 

For a radar with ERP = PtGt/Lt, the range Rrt at which a transponder response 

is triggered is found as 
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The corresponding range at which the radar detects the response is 
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where Smin r is the minimum single-pulse signal power at the radar for given detec-

tion probability Pd. A probability Pd = 90% should be used for reliable transpond-

er jamming. In terms of the radar parameters used in Chapter 1: 
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where D0(n) is the steady-signal, single-pulse SNR required for Pd, assuming n- 

pulse noncoherent integration with loss Li, and Lf, M, Lp, and Lx are the loss factors 

used to determine Dx in (1.26).  

As an example, consider the radar described in Table 3.1, transmitting 1-s 

pulses, and transponder characteristic listed in Table 3.4. The pattern-propagation 

factor F
2
j = 30 dB is chosen to allow response in the radar’s sidelobe region. The 

sensitivity is typical of a receiver using a low-noise RF amplifier followed by a 

square-law detector and video amplifier [8, p. 429]. 

                                                           
7  The usual transponder specification gives the tangential sensitivity, corresponding to a signal-to-

noise ratio of +4 dB at the input of a square-law detector [8, p. 427]. For reliable triggering, Smin j 

should be several decibels above that level. Receiver sensitivity is commonly specified in dBm 
(decibels with respect to 1 mW). 
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Table 3.4  Example Transponder Jammer 

Radar frequency band X-band  Transmitter peak power Pj  50W 

Antenna gain Gj 10 dB  Transmit or receive loss Lj  1.0 dB 

Polarization factor F 2
pj  3 dB  Pattern-propagation factor F 2

j 30 dB 

Atmospheric loss Lj 0.9 dB  Lens factor F 2
lens j 0.1 dB 

Sensitivity Smin j 70 dBm    

Application of (3.80)(3.82) with parameters from Tables 3.1 and 3.4 gives 

the following results: 

Range for triggering response: Rrt = 366 km 

Radar receiver sensitivity: Smin r = 100.6 dBm 

Range for detection of response: Rmt = 311 km 

3.8.1.2 Repeater Equations 

The repeater differs from the transponder in that it accepts the signal received with 

antenna gain Gj, amplifies it with electronic gain Ge, and retransmits it with anten-

na gain Gj, and usually with duty cycle Du < 0.5 to avoid self-oscillation. Design 

of the repeater is based on responding with a power representing a target with 

radar cross section e, viewed by the radar mainlobe at range Rj.  

Radar cross section may be considered in terms of an equivalent sphere of ra-

dius r having projected area r
2
. Scattering from the sphere is isotropic, so the 

RCS may be regarded as the product of the projected area and an isotropic gain 

G = 1: 

 2AG r     (3.83) 

An idealized repeater passes the incoming radar pulse received in aperture area 

Ae = Gr
2
/4 directly to the transmitting antenna with gain Gj, producing an 

equivalent RCS given by 
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From this, the idealized repeater gain Grep required for a specified e is 
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In practice, repeater antennas are too small to provide this gain, and the re-

peater gain is increased by electronic amplification Ge placed between Gr and Gt, 
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which must also overcome RF losses Ljr and Ljt within the repeater, in the pattern-

propagation factors Fjr and Fjt of the receiving and transmitting paths, and in their 

polarization factors Fpj r and Fpj t. Assuming equal gains and losses for receiving 

and transmitting, and use of gating with duty cycle Du to isolate the receiver from 

the transmitter, the required electronic gain Ge, as derived in [8, p. 424], is 
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The second form of (3.86) replaces L from [8] with the two-way RF loss within 

the repeater and the two-way polarization and pattern-propagation factors. The 

factor F j
4
 is included on the assumption that a repeater located off the axis of the 

radar beam, and possibly in the radar sidelobes, is intended to reproduce the signal 

power that would result from an on-axis target with RCS equal to e.  

An escort repeater located in a region of 30 dB sidelobes, with the same pa-

rameters as were used for the transponder example, Table 3.4, requires a very 

large electronic gain: 

 9

2 2 2 2

4 10 1.58
8.86 10  +99.4 dB

0.03 10 0.5 0.001
eG

 
   

  
 

A stand-off repeater would require even greater gain to account for the ratio 

(Rj /R)
4
. Gains of this sort would apply, for example, to escort or stand-off DRFM 

jammers. The signal power received from the example radar at Rj = 100 km is 

58.4 dBm, and the RF receiver gain brings this to a level high enough to drive 

the DRFM. The DRFM is followed by A/D conversion and sufficient RF transmit-

ter gain to raise the analog signal to the required output power of 12.6W = +41 

dBm. Introduction of time gating and delay between intercept and transmission of 

the signal prevents self-oscillation. 

For a self-protection repeater (Fj = 1) the required electronic gain is +39.5 dB 

(input signal 25.8 dBm, output power +13.7 dBm). Additional gain would be 

required to overcome the duty-cycle loss inherent in a self-protection jammer, 

since it cannot isolate the output from the input with gating and time delay, and 

must operate as a straight-through repeater.  

Note that these range equations do not describe limits to radar detection 

range, but rather jammer requirements that allow the radar to trigger and receive 

the deceptive emission. The effect on the radar depends on factors other than 

range equations. 
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3.9 SUMMARY OF DETECTION IN JAMMING 

3.9.1 Range with Noise Jamming 

Noise jamming is used for masking of targets, and is usually generated by a sup-

port jammer. The steps in calculating detection range are as follows. 

 The jamming noise density J0 is calculated from (3.73). 

 The jamming density J0 is converted to an effective value by applying the 

jamming quality factor Qj, according to (3.74) 

 The equivalent jamming temperature Tj is found by dividing J0e by Boltz-

mann’s constant, according to (3.75). 

 If more than one jammer is present, their noise temperatures are summed and 

added to the system temperature to find the total input noise temperature Ts, 

according to (3.76). 

 The maximum detection range is found by substitution of Ts for Ts in (1.26). 

When noise is used for self-screening, these steps are replaced by calculations 

of a burnthrough range from (3.79).  

3.9.2 Deceptive Jammer Equations 

The jammer sensitivity, gain, and output power required for deceptive jamming 

are given by (3.80)(3.86). Radar detection range on targets is affected only if the 

deceptive jamming distracts the operator or automatic circuitry from otherwise 

detectable signals. 

3.10 DETECTION IN COMBINED INTERFERENCE 

The range equations given for special cases in preceding sections apply to combi-

nations of jamming and thermal noise. When clutter is present as well, at the rang-

es where target detection is required, it is necessary to calculate the effective spec-

tral densities of the several interference components and add these to find, at each 

range, effective total interference level I0e from (3.2). That level then replaces N0 = 

kTs in (1.26) or similar equations for maximum detection range. The definitions of 

effective interference spectral density take into account the properties of the signal 

processor, so there is no need to make further adjustment for “processing gain” or 

other factors sometimes appearing in the literature. 

The constraints imposed by multiple, simultaneous interference components 

on the choice of waveform and processing method must not be ignored, however. 
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Measures that improve the performance with one type of interference often in-

crease vulnerability to others. A notable example is the combination of active 

jamming with chaff or natural clutter. Use of frequency agility to overcome spot 

jamming is precluded by presence of any type of clutter at the required detection 

range (or its ambiguities), since Doppler processing for clutter rejection requires 

waveforms that maintain coherence over the coherent processing interval (CPI). 

Responsive jammers can measure the signal properties on pulses early in each CPI 

and achieve masking by responding to subsequent pulses.  

Another constraint is imposed by presence of clutter at ranges both within and 

beyond the unambiguous range of the waveform. While there is a theoretical po-

tential for cancellation of multiple-time-around clutter with staggered PRI wave-

forms, uniform-PRI waveforms are required in practice. Coherent processing must 

start only after clutter from the longest ranges has entered the receiver. If blind 

speeds exist within the spectrum of potential targets, PRI diversity from one pulse 

group to the next is necessary to fill those gaps, increasing the required dwell 

time. This imposes a burden especially on scanning-beam radars that perform 

search scans within tightly constrained time budgets.  

Waveform and processor requirements for different environments are dis-

cussed in Chapter 9. 
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CHAPTER 4 

Detection Theory  

The first step in derivation of the radar equation in Chapter 1 was to express 

through (1.9) the ratio E/N0 of signal-to-noise energy available at target range R. 

The second step expressed the ratio required for each of n pulses to achieve target 

detection. For an idealized radar we call this value, denoted by D(n), the basic 

detectability factor: the signal-to-noise ratio derived from the theory of target de-

tection before application of losses encountered in practical radar systems. The 

maximum range Rm is that at which E/N0 = D(n). This chapter summarizes meth-

ods of calculating D(n) for different radar waveforms and target models. Chapters 

5, 9, and 10 discuss the losses that increase the requirement for input energy ratio 

from D(n) to Dx(n), the effective detectability factor that must be used in a com-

plete radar equation such as (1.22).  

4.1 BACKGROUND 

Blake [1] summarizes the refinement of the radar range equation at the Naval Re-

search Laboratory in years following WWII. He defines the visibility factor V0 as 

the single-pulse signal-to-noise energy ratio E/N0 required to obtain a specified 

probability of detection Pd when n pulses are integrated on a cathode-ray-tube 

display for visual detection by a human operator. He generalizes this to the detect-

ability factor D(n) for radars in which integration and detection is performed elec-

tronically or digitally. This factor appears in (1.16) and other simplified forms of 

the radar equation. It represents a theoretical value for each of n pulses received 

with equal power, passed through a matched filter along with white Gaussian 

noise, envelope detected, integrated noncoherently with equal weights, and ap-

plied to the detection threshold. 
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Because the idealized radar receiver is matched to the signal spectrum, the 

signal-to-noise power ratio S/N delivered to the envelope detector equals the ener-

gy ratio E/N0 at the radar input. The detectability factor D(n) is expressed by theo-

retical equations that are based on S/N at the input to the envelope detector.  

Exact equations have been developed giving the detection probability for sev-

eral statistical target models. These equations are complex, requiring numerical 

integration or reference to special tabulated functions. As a result, much of the 

literature on radar detection is devoted to development of approximations that 

permit quick calculation of Pd for given signal-to-noise power ratio S/N, and vice 

versa, avoiding the theoretical equations required for exact solutions. Many pages 

(and an entire book) of graphs have been published showing Pd as a function of 

S/N, for different target models and with specific values of Pfa and n. The graphs 

provide insight into the effects on detection of different radar and target character-

istics, but numerical values with adequate accuracy for use in the radar equation 

are best found by solving the underlying equations, either exactly or approximate-

ly.  

Personal computers and mathematical programs such as Mathcad


 and 

MATLAB


 can provide rapid and accurate solutions of the exact detection equa-

tions. Built-in Bessel, gamma, and other functions simplify use of these equations, 

and the root-finding ability of the mathematical platforms provides results when 

there is no closed-form expression for D(n) as a function of Pd. Where repetitive 

calculation of multiple values is required, reasonably accurate approximations are 

available to minimize computation time. The procedures outlined in this chapter, 

available as a Mathcad program in the accompanying DVD, are described here to 

permit implementation in any programming language. Approximations of varying 

complexity and accuracy are also given. 

4.2 STEADY-TARGET DETECTABILITY FACTOR 

The basic detectability factor for a steady (nonfluctuating) target (Case 0) is de-

noted by D0(n). It is the theoretical value derived by Rice [3] for a single pulse, 

and by Marcum [4, 5] for n noncoherently integrated pulses. Exact expressions are 

given by DiFranco and Rubin [6], whose comprehensive work provides the basis 

for much of this chapter.  

The input parameters required for calculation of D0 are: 

  Detection probability Pd; 

  False-alarm probability Pfa;  

  Number n of envelope-detected pulses integrated. 
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In coherent radar applications, n is replaced by n = to/tf, the number of samples 

from prior coherent integration, where to is the observation (integration) time and 

tf is the coherent integration time.  

Notations used here are translated from those in the referenced literature (e.g., 

number of pulses N and signal-to-noise energy ratio Rp/2 in [6] are replaced by n 

and s). The factor D0(n) is denoted by D0(Pd,Pfa,n) and the detection probability Pd 

by Pd(s,n,Pfa) in some equations, to emphasize the dependence on all three input 

parameters. A simple s replaces the signal-to-noise power ratio S/N, for compact-

ness.  

4.2.1 Exact Steady-Target Detection Probability 

The steady target is seldom found in practice, but it serves as a useful reference, 

generally giving the lower limit of D(n). An exact expression for detection proba-

bility, assuming a square-law detector,
1
 is [6, p. 348, Eq. (10.4-27)]: 

      
1

2

0 1

0

, , 1 exp 4

b
ny

d b n

y
P s n y y ns I nsy dy

ns





 
    

   (4.1) 

where 

s  =  S/N = signal-to-noise power ratio at the input of the envelope 

detector; 

n  =  number of pulses integrated;  

yb  =  threshold voltage normalized to rms noise at detector output; 

y = sum of detector output voltages for n pulses; 

In(x)  =  modified Bessel function of the first kind of order n.  

4.2.2 Threshold Level 

To apply (4.1) we must first establish the threshold level yb that is the upper limit 

of the integral. Exact and approximate solutions for this threshold, which is com-

mon to all target models, are given here, before we return to calculations of detec-

tion probability.  

The probability of false alarm for a system that integrates n pulses is given by 

[6, p. 347, Eq. (10.4-18)]: 

                                                           
1  The relative performance of square-law and linear detectors is discussed by Marcum [5, pp. 35, 99], 

showing that the difference is < 0.1 dB, favoring the linear detector for 2  n < 70 and the square-

law for n > 70, with equal performance for n = 1 and n = 70. We will consider here only the square-
law detector. 
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The last term in (4.2) is the incomplete gamma function [7, p. 260, Eq. (6.5.1)]: 
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We use the symbol P to avoid confusion with other symbols, and to emphasize 

that the incomplete gamma function expresses a probability. The function (n) in 

(4.3) replaces (n  1)! in (4.2) to extend the expression to noninteger values of n. 

The false-alarm probability can be expressed in terms of the incomplete gamma 

function: 

  1 ,fa bP P n y   (4.4) 

Note that P(x,n) differs from Pearson’s incomplete gamma function I(x,n) 

used in [6, p. 347, Eq. (10.4-19)]: 
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 (4.5) 

Care is needed to ensure that tabulated incomplete gamma functions or those 

built into computer programs
2
 are defined consistently with (4.3). This and similar 

functions in other mathematical programs permit rapid evaluations without nu-

merical integration.  

The solution of (4.4) for threshold level requires either a root-finding algo-

rithm or implementation of the inverse function P
1

(p,n): 

      1

,, root 1 = 1 ,
bb fa y fa b n fay P n P P y P P n

 
       (4.6) 

                                                           
2  Mathcad has a built-in function P(x,n), denoted by pgamma(x,n) and its inverse function P

1(p,n), 

denoted by qgamma( p,n), using algorithms derived from [7, p. 263]. Another function (n, x) built 

into Mathcad is the integral in (4.3) without the factorial term (n  1)! or (n). 
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where the notation  root
by bp f y    denotes the value of yb that yields equality 

in the bracketed expression.  

If root-finding or the inverse of the incomplete gamma function is not availa-

ble, or is computationally burdensome, an excellent approximation to the inverse 

of (4.3) has been developed [8, 9]. In this method, applicable to either square-law 

or linear envelope detectors, the threshold is expressed as a function of the mean 

and standard deviation of the detected noise voltage: 

 
1 1b x t x ty m k nm k n       (4.7) 

where 

mx = mean of integrated output voltage; 

m1 = single-pulse mean voltage (= 1 for square-law detector); 

x  =  standard deviation of integrated output voltage; 

1 = single-pulse standard deviation (= 1 for square-law detector); 

kt = threshold constant. 

For the square-law detector, the kt for n = 1 is simply kt1 = ln(Pfa)  1, while for 

n   it is kt = 
1

(Pfa), where (·) is the integral of the normal distribution and 


1

(·) is the inverse function: 
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These normal probability functions have been tabulated and are built into many 

calculators and mathematical programs, making numerical integration unneces-

sary. Interpolation for ktn over 1  n   gives 

    
   

 

1

0.51

1.1 1 1

t fa t fa

t n fa t fa

k P k P
k P k P

n






 

   

 (4.9) 

from which yb(Pfa,n) is found using (4.7): 

    
 

 

1

1

, 0.51

ln 1

1.1 1 1

fa fa

b fa n fa

P P
y P n n P

n




    

    
     

 (4.10) 
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Neither integration nor root-finding is needed, assuming that the inverse normal 

distribution function 
1

(Pfa) is available from analytic approximations [7, p. 933, 

Eq. (26.2.23)]. Equation (4.10) is accurate within 0.15 dB for n  100 and 

Pf  0.1. The method provides accurate inversion of the incomplete gamma func-

tion when that is not available as a built-in function: 
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 (4.11) 

This inversion, valid for p < 0.95, will prove useful in calculations for the 

Swerling and other chi-square target models in Section 4.3. 

4.2.3 Exact Steady-Target Detectability Factor  

The radar equation does not include Pd, requiring instead the detectability factor 

D(n) that supports the specified Pd. Since (4.1) for Pd cannot be inverted to obtain 

a closed-form expression for D(n), the detectability factor is found by solving for 

D0(n) = s: 

       
1

2

0 0 1

0

root , , 1 exp 4

b
ny

s d b n

y
D n s P s n Y y ns I nsy dy

ns





 
          

 
   

  (4.12) 

If root-finding is not available or is too computationally burdensome, approximate 

methods described in Section 4.2.6 can be used. 

4.2.4 Exact Single-Pulse, Steady-Target Detectability Factor 

The detection probability for a single pulse on a steady target is obtained by inte-

grating the Rician distribution [3] of signal-plus-noise voltage to find Pd as the 

fraction of the distribution lying above the threshold: 
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where 
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En = instantaneous noise voltage; 

N = average noise power; 

Es = peak signal voltage; 

Et = threshold voltage; 

I0 = modified Bessel function of the first kind. 

The signal-to-noise power ratio is  

 
2

2

sES
s

N N
   (4.14) 

The threshold voltage is found from the false-alarm probability by setting 

Es = 0 in (4.13): 
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Figure 4.1 is a plot of Pd as a function of S/N, obtained from (4.1) with thresholds 

corresponding to different values of Pfa. For a given Pfa, the value of D0(1) can be 

read from Figure 4.1 to within 0.1 dB for any required Pd, or vice versa. Exact 

values can be calculated using the root of (4.13): 
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4.2.5 Approximations for Single-Pulse, Steady-Target Detectability Factor 

To avoid integration and root-finding, closed-form approximations for Pd and D0 

can be derived using North’s approximation [10]: 
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The accuracies of these approximations are excellent except at low Pd, as 

shown in Figure 4.2. Errors are within 0.1 dB for values used in most practical 

applications of the radar equation. 

Another approach to approximation of D0(1) is to start with the simple, exact 

calculation for the Case 1 target (Section 4.3.4) and subtract the fluctuation loss 

(see Section 4.4.5) that applies to that target, as approximated by (4.54).  

4.2.6 Approximations for n-Pulse, Steady-Target Detectability Factor 

An approximate method of calculating the n-pulse detectability factor for the 

steady target is given by Shnidman [11]. He defines a parameter : 
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Figure 4.1  Single-pulse, steady-target detectability factor D0(1). 
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where the function sign(x) = 1 for x  0 and 1 for x < 0. From (4.19) the detecta-

bility factor is found as 
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The added subscript s denotes the Shnidman approximation. Only square roots and 

logarithms are required in this procedure. Figure 4.3 shows Pd versus detectability 

factor for three pairs of (Pfa, n). The approximation is accurate within 0.1 dB for 

values normally encountered. 

Another approximate method of approximating D0(n) is to start with the sim-

ple, exact calculation for the Case 1 target (Section 4.3.3), add the integration loss 

as approximated by (4.51), and subtract the fluctuation loss (see Section 4.4.5) 

that applies to that target, as approximated by (4.54).  
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Figure 4.2  Comparison of North’s approximation with exact values for D0(1). 
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4.3 DETECTABILITY FACTORS FOR FLUCTUATING TARGETS 

4.3.1 Generalized Chi-Square Target Fluctuation Model 

Virtually all actual radar targets have cross sections that vary with time, frequen-

cy, aspect angle, and polarization. The statistics of most fluctuating targets are 

described by the chi-square distribution. The chi-square distribution with m de-

grees of freedom (dof) is the distribution of the sum of m independent, normally 

distributed components. A target echo received and processed through an enve-

lope detector, without preceding coherent integration, has a chi-square distribution 

with m = 2ne dof, where ne is the number of independent pulses or signal samples, 

each contributing a vector signal component with normally distributed in-phase 

and quadrature components. 

Four commonly used models for targets fluctuating in time were introduced 

by Swerling [12]. These models have voltage statistics corresponding to chi-

square distributions with different degrees of freedom, representing samples of the 

Gaussian in-phase and quadrature components of the vector voltage for a target 

with either slow or fast fluctuation. Table 4.1 describes the Swerling model statis-

tics in terms of the number of dof, the number ne of independent target samples, 
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Figure 4.3  Comparison of Shnidman’s approximation with exact values for D0(n). 
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and the fluctuation rate, defined in terms of the relationship of the target correla-

tion time tc to the pulse repetition interval tr at which n pulses are received over an 

integration time to = ntr. 

Table 4.1  Parameters of Swerling Target Models 

Case dof ne Fluctuation Rate 

1 2 1 Slow: tc >> ntr 

2 2n n Fast: tc < tr 

3 4 2 Slow: tc >> ntr 

4 4n 2n Fast: tc < tr 

The models must be interpreted as applying not to the targets themselves, but to 

the echo signals of the target as observed by a radar system whose location, rela-

tive to the target, may change with time, and whose radiated waveform may also 

change as a result of frequency or polarization diversity. The radar system design-

er can change the fluctuation statistics of a given target to avoid prolonged fades 

by exploiting diversity, usually in frequency, where multiple channels operating in 

parallel or in sequence are available.  

The four Swerling cases are described by Table 4.1, but the general chi-

square distribution is more broadly applicable. Methods of estimating ne for radars 

with diversity are described in Section 4.5. Integer values other than ne = 1, 2, n, 

or 2n are commonly observed, as well as noninteger values, and these are accom-

modated in the general expressions developed in [13], given in Section 4.3.2. 

4.3.2 Detection of Signals with Chi-Square Statistics 

The probability that a chi-square distributed quantity with m dof lies below 
2
 is 

given by [7, p. 262, Eq. (6.5.5]: 
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Barton presents in [2, 13] an approximate method of finding Pd and D(n) for 

all Swerling cases and for signal models with arbitrary dof and ne. The integral of 

the chi-square distribution
3
 P(

2
,m) and its inverse function P

1
(p,m) are used in 

[2, 13], but are replaced here by the corresponding incomplete gamma function P 

and its inverse for comparison with equations for the Swerling models given in 

[6]. The relationship between the functions is: 

                                                           
3  The symbols Km and Km

1 in [2, 13] are replaced here by P and P
1. 
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The detection probability and basic detectability factor for the chi-square fluctuat-

ing target are [2, p. 68, Eq. (2.64)]: 
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The notation D(Pd,  Pfa,n,ne) can be simplified to D(n,ne). Both P and P and their 

inverse functions are included as built-in functions in platforms such as Mathcad. 

Approximation errors in D from (4.24) are shown in Sections 4.3.3–4.3.5, with 

errors less than 0.2 dB for most radar and target parameters. 

The notation D(n,ne), with the appropriate value of ne, replaces D(n) as the 

basic detectability factor in the radar equation, covering all target statistics dis-

cussed above, as well as fractional values of m discussed by Weinstock [14]. 

While the steady target can be approximated by the chi-square distribution with 

ne  50, better accuracy is obtained using Shnidman’s approximation (Section 

4.2.5). 

4.3.3 Swerling Case 1 

This section discusses Case 1, known as the Rayleigh target (the Rayleigh distri-

bution is the chi-square with two degrees of freedom). It is of primary importance 

in radar, because it is the distribution inherent in any target echo that results from 

multiple (e.g., more than about four) scattering sources of comparable magnitude. 

The central limit theorem states that the distribution of the sum of m independent-
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ly varying quantities tends toward the Gaussian distribution as m increases, re-

gardless of their individual distributions. Hence the vector echo voltage from mul-

tiple scatterers (m > 4) consists of Gaussian in-phase and quadrature components, 

and the magnitude of the vector has a Rayleigh distribution. Very few targets en-

countered in actual radar operation depart significantly from this distribution, ex-

cept through the exploitation of diversity in the radar transmission (see Section 

4.5). 

The target echo from a Rayleigh-distributed (Swerling Case 1) target has sig-

nal-plus-noise voltage and power distributions like those of noise alone, but the 

mean power is the sum of the mean signal and mean noise powers: 
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 (4.25) 

where 

v = instantaneous signal-plus-noise voltage; 

S  = average signal power; 

N = average noise power; 

dPv  = probability that instantaneous signal-plus-noise voltage lies between 

v and v + dv; 

p = instantaneous signal-plus-noise power; 

dPp  = probability that instantaneous signal-plus-noise power lies between p 

and p + dp. 

4.3.3.1 Exact Equations for Single-Pulse, Case 1 

The detection probability for a single Case 1 echo pulse is 
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where yb is the single-pulse threshold voltage from (4.15). 

Equation (4.26) is readily inverted to find the basic single-pulse detectability 

factor D11 = D1(1): 
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Because the exact equations are so simple, approximations are nor needed for sin-

gle-pulse, Case 1 detection calculations. 

4.3.3.2 Exact Expressions for n-Pulses, Case 1  

The exact expression for Pd with n-pulse integration of a Case 1 target is [6, p. 

390, Eq. (11.2-38)]: 
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where P(x,n) is the incomplete gamma function (4.3), yb is the threshold given by 

(4.6), and s = S N is the average signal-to-noise ratio. 

The exact detectability factor for the Case 1 target with n > 1 can be found 

only by root-finding from (4.28): 
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  (4.29) 

4.3.3.3 Approximations for n-Pulse Case 1 Detectability Factor 

An approximation for the detection probability is [6, p. 390, Eq. (11.2-39)]: 
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 (4.30) 

This expression is found by assuming that the incomplete gamma functions in 

(4.28) are near unity for Pfa <<1. It is exact for n = 1, and the error in Pd is < 0.005 

for Pfa < 0.05 and negligible for Pfa < 0.01 or s > 10. However, this approximation 

cannot be inverted to yield the detectability factor, requiring a further approxima-

tion. 

The detectability factor is obtained from [6, p. 392, Eq. (11.2-43)], which is 

derived by first taking the natural logarithm of both sides, and then assuming that 

ln(1 + 1/ns)  1/ns and 1 + ns  ns in (4.30), to obtain 
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Using Gregers-Hansen’s approximation of yb, this becomes: 
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 (4.32) 

The accuracy of this approximation is shown in Figure 4.4, which shows agree-

ment within 0.5 dB for Pd  0.3, Pfa  10
3

, and increasing accuracy for n > 10. 

Curves are not shown for n = 1, where exact solutions are readily computed from 

(4.27). Note that the approximations are very accurate for high detection probabil-

ities and large n, where the exact expressions may not lie within the range at 

which built-in functions can be used. 

Detection performance on the Case 1 target is described by the universal 

equations (4.23) and (4.24), expressed in terms of the incomplete gamma function 

P and its inverse P
1

, with the number of independent target samples ne = 1: 
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Figure 4.4  Comparison of DiFranco and Rubin Case 1 approximation with exact values, for n = 2, 10, 

100 and Pfa = 103 and 106. 
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 (4.34) 

The accuracy of this approximation is far better than that given in (4.31) or (4.32), 

as shown in Figure 4.5. The universal equation also gives exact results for n = 1. 

4.3.4 Swerling Case 2 

4.3.4.1 Exact Equations for Case 2 

The exact expression for Pd with a Case 2 target [6, p. 404, Eq. (11.3-21)] is: 
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Figure 4.5  Comparison of universal equation (dashed curves) with exact values for Case 1  

 detectability factor. 
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  (4.35) 

This exact result is also obtained from the universal equation (4.23) with ne = n: 
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 (4.36) 

The detectability factor D2(n) may be obtained as the root of (4.35) with respect to 

s, or through the inverse incomplete gamma function. We write, from (4.35) 
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This exact expression is also found from the universal equation (4.24) by setting 

ne = n.  

4.3.4.2 Approximations for Case 2 Detection Probability and Detectability 

Factor 

Where the inverse incomplete gamma function is not available, it may be approx-

imated as derived by Gregers-Hansen, using (4.11). That approximation has diffi-

culty with the denominator of (4.37), however, when Pd > 0.95, and hence should 

be used with caution. Approximations in [6, p. 407] exhibit larger errors, and are 

not recommended, given the ease with which the inverse incomplete gamma func-

tion can be evaluated. The steady-target D0 approximations with n > 20 give D2 

with adequate accuracy for many purposes. 

4.3.5 Swerling Case 3 

In [6, p. 410, Eq. (11.4-21)] an expression is derived for the probability density 

function of signal plus noise for Case 3. From this, an approximate expression for 

Case 3 detection probability is obtained [6, p. 421, Eq. (11.4-24)]: 
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This is stated to be exact for n = 1 or 2, and approximate for larger n. Inversion of 

(4.38) to obtain detectability factor D3(n) is possible only through root-finding 

methods. 

Approximations are given in [6] for Case 3 with n >>1, using a graphical 

method for inversion of the Pd equation to yield D3(n). More accurate approxima-

tions are found from the universal equations with ne = 2: 
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The results are shown in Figure 4.6, in which the difference between the curves 

for (4.38) and (4.40) for n = 10 and 100 may result from inexactness in (4.38), 

since the two sets of curves are identical for n = 2. 
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Figure 4.6  Comparison of Case 3 detectability factor from universal equation (4.40) with values from 

(4.38). The universal equation overlies the exact values for n = 2. 
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4.3.6 Swerling Case 4  

The exact expression for Case 4 Pd is [6, p. 427, Eq. (11.5-19)]: 
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The root of (4.41) with respect to s yields D4(n).  

The approximation for Case 4 detection probability [6, p. 438, Eq. (11.5-25c)] 

is inadequate, but approximations derived from the universal equations are: 
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The accuracy of (4.43) is shown in Figure 4.7. 

4.4 APPROXIMATE EQUATIONS BASED ON DETECTOR LOSS 

In [15] a method was developed approximate the detectability factor using func-

tions commonly available on pocket calculators without numerical integration or 

root-finding. The only special functions used in this method are (E), the integral 

of the normal distribution and its inverse 
1

(P), given by (4.8) and available 

through analytic approximations in [7]. The method is of continuing value because 

it associates the integration loss with the signal-to-noise ratio at the input to the 

envelope detector, whose nonlinearity destroys information that would be availa-

ble if coherent detection could be used. 

4.4.1 Coherent Detection 

Detection of an exactly known signal is discussed in [6, pp. 291–298]. A single 

pulse arriving with known frequency and phase is passed through a coherent de-

tector, in which a reference sinusoid having that frequency and phase performs 

linear conversion of the input signal to a positive pulse at baseband. The resulting 

detector output signal-to-noise ratio so is exactly twice that of the input s, half the 

noise power being rejected by the detector. The threshold level is given exactly as 
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The detection probability is 
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Solving (4.45) for the single-pulse detectability factor for coherent detection of a 

steady target, we obtain 
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For example, the requirement for coherent detection is Dc1(0.9,10
6

) = 12.60 dB, 

for a single pulse, compared with D0(1) = 13.18 dB for the envelope-detected 

pulse. Coherent integration of n pulses results in a requirement for each pulse giv-

en by 
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Figure 4.7  Comparison of Case 4 detectability factor from universal equation (4.42) with exact values 
from (4.41). 
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Since the phase of a previously undetected signal is unpredictable, coherent 

detection cannot be implemented in practice. However, it provides a minimum 

reference requirement from which values applicable to noncoherent detection and 

integration can be calculated if the loss inherent in envelope detection is known. 

4.4.2 Envelope Detection and Detector Loss 

Detector loss, also called the “small-signal suppression effect,” occurs when a 

signal, accompanied by noise, is passed through an envelope detector. The output 

signal-to-noise ratio so is reduced from 2s, as in the coherent detector, to 
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The approximation Cx = (s + 2.3)/s was determined empirically in [15]. Setting 

so = 2Dc1, as required to meet detection requirements, and solving for s = D0(n), 

the n-pulse, steady target detectability factor, we obtain 
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The error is calculating the detectability factor from detector loss is shown in 

Figure 4.8, for n = 1, 10, and 100 and Pfa = 10
3

 and 10
6

. This procedure underes-

timates the requirement for very high Pd, overestimates it for very low Pd, and is 

within tenths of a decibel for 0.3 < Pd < 0.9. 

4.4.3 Integration Loss 

The total signal energy required at the input of the envelope detector is nD0(n), 

and the ratio of that total to the single-pulse energy requirement is called integra-

tion loss, as defined by Marcum [4]: 
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where we abbreviate D0(1) as D01. The integration loss can be expressed as a func-

tion of D01, from (4.49), substituting  2

1 01 01 01 2.3c xD D C D D   : 
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As shown in [15], integration loss is not a property of the integrator, but rather is 

an increase in detector loss due to the reduced input S/N made possible by the 

integration gain. Note that Li depends on Pd and Pfa only to the extent that these 

probabilities affect D01. A single family of curves for Li, Figure 4.9, thus covers all 

combinations of detection requirements, rather than having an infinite number of 

curves for possible pairs of Pd and Pfa, some of which are presented in [4] and oth-

er literature. 

It can be seen that the penalty for noncoherent integration of n < 10 pulses is 

small when the requirement is for D01 > 10 dB, but that it increases as n  for 

larger n.  
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Figure 4.8  Comparison of detectability factor D0(n) derived from detector loss with exact values from 

(4.12). 
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4.4.4 Integration Gain 

The fact that noncoherent integration carries a loss Li does not mean that this type 

of integration is undesirable. It means that it is less effective than coherent integra-

tion of the same number of input pulses, but coherent integration is often impossi-

ble or even undesirable. As will be shown in Section 4.5.1, noncoherent integra-

tion of 2  n  10 samples, obtained with diversity, may provide better perfor-

mance for Pd > 0.5 than coherent integration, even when the latter can be imple-

mented.  

The gain in performance from noncoherent integration, compared with a sin-

gle pulse, is 
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Figure 4.9  Integration loss versus number of pulses for different values of D01. 
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and this gain is always within the limits 
in G n  . For moderate values of n, it 

is  n
0.8

 (e.g., Li(n)  2 dB for n = 10), when Pd and Pfa are such that D01  12 dB is 

required. 

4.4.5 Fluctuation Loss 

The detectability factor for a Case 1 fluctuating target may be found by multiply-

ing the steady-target detectability factor D0(n) by a fluctuation loss Lf 1, defined as 

  
 

 
1

1

0

f

D n
L n

D n
  (4.53) 

where it is understood that the probabilities Pd and Pfa are the same for both tar-

gets. The loss is a strong function of Pd and a weak function of Pfa and n, as can be 

seen from Figure 4.10. The loss is  0 dB for Pd  0.35, and turns negative (be-

comes a gain) for Pd < 0.35.  

An analytic approximation of the data in Figure 4.10 gives the fluctuation loss 

Lf 1 in decibels as a function of n, Pd, and Pfa: 
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Figure 4.10  Case 1 fluctuation loss Lf1 versus Pd for different Pfa and n. 
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  (4.54) 

4.4.6 Case 1 Detectability Factor 

Using (4.18), (4.51), and (4.54), the Case 1 detectability factor is 

        1 , 01 , 1 ,

1
, ,d fa d fa i f d faD P P n D P P L n L P P n

n
  (4.55) 

This formulation requires only the inverse integral of the normal distribution and 

the log function, along with multiplication and division. The accuracy of this pro-

cess, using the North approximation for D01, the detector loss approximation for 

Li, and (4.54) for Lf 1,is shown in Figure 4.11. 

The calculation can also be done by reading and adding the decibels values of 

steady-target detectability factor D01 from Figure 4.1, integration loss Li from Fig-

ure 4.9, and fluctuation loss Lf1 from Figure 4.10, and subtracting 10logn: 
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Figure 4.11  Case 1 detectability factor D1(n) versus Pd for different Pfa and n. 
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      1 01 1 10logi fD n D L n L n n        (4.56) 

where the primed symbols denote decibel values. There is no systematic error in 

such calculations, but each curve is readable only to about 0.1 dB. 

4.4.7 Detectability Factors for Other Fluctuating Targets 

It was established in [15] that the decibel value of fluctuation loss varies inversely 

with the number ne of independent target samples: 
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 (4.57) 

This approximation is very close to the exact results obtained by Kanter [16]. 

Thus, the detectability factor D in decibels, for any chi-square target model, can 

be approximated as 

        01 1, 1 10loge e i e fD n n D L n n L n n        (4.58) 

The value of ne for the Swerling models is listed in Table 4.1, and for other chi-

square models can be determined as shown in the following section. 

4.5 DIVERSITY IN RADAR 

4.5.1 Diversity Gain 

The large fluctuation loss for Pd > 0.5 suggests that noncoherent integration of 

multiple independent target samples (ne > 1) obtained by diversity can result in 

improved detection performance. As an example, assume that 16 pulses are re-

ceived during a beam dwell time to on a Case 1 target: to = 16tr. They might be 

integrated coherently to provide a single sample at the envelope detector with en-

ergy E/N0 = 16E1/N0, where E1 is the single-pulse energy. For a specified Pd = 0.9, 

Pfa = 10
6

, (4.27) yields  

 D1(1) = 130.1 = 21.1 dB 

Alternatively, if the RF bandwidth of the transmitter, antenna, and the microwave 

components of the receiving system permit, the 16 pulses can be transmitted in 
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two 8-pulse groups at different frequencies, four 4-pulse groups at four frequen-

cies, eight 2-pulse groups at eight frequencies, or 16 single pulses at different fre-

quencies. Coherent integration could be performed on the pulses within a given 

frequency group, and noncoherent integration performed on the resulting outputs 

at different frequencies. Assuming that the frequencies differ by an the amount 

needed to decorrelate the echoes (see Section 4.5.2), the total energy required will 

follow the curves shown in Figure 4.12. 

For Pd = 0.9, the best performance is obtained with ne = 8, with a total energy 

requirement 4.9 dB less than a system without diversity; ne = 4 is almost as good. 

The optimum ne is reduced to four, and then to two, as Pd is reduced through 0.8 to 

0.5. 

4.5.2 Signal and Target Models with Diversity 

The radar target usually consists of several scattering sources whose reflected 

fields add vectorially at the radar antenna. As long as the number of such sources 

exceeds about four, the statistics of each quadrature component in the combined 

field approach Gaussian, leading to the Case 1 target (ne = 1, dof = 2) that has a 

Rayleigh distribution of voltage. There is no physical basis for a target having 

dof > 2, although a target containing one dominant scatterer is often modeled ap-

proximately as Case 3 (dof = 4). The Swerling models should, instead, be inter-

preted as representing the distribution of echo signals received and processed by a 
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Figure 4.12  Total energy required versus number of diversity samples within 16 pulses for Rayleigh 

target at different detection probabilities, Pfa = 106. 
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radar in which diversity can provide independent samples in time, frequency, 

space, and possibly in polarization.  

4.5.2.1 Time Diversity  

As pulses are received over the integration time to, the in-phase and quadrature 

voltage components may change to produce net > 1 independent samples for inte-

gration [2, p. 86, Eq. (2.50)]: 

 1 o

et

c

t
n n

t
    (4.59) 

Here tc is the correlation time of target echoes, given by [2, p. 86, Eq. (2.60)] 
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 (4.60) 

where  is the radar wavelength, a is the rate of change of aspect angle, and Lx is 

the cross-range span of the target scatterers in the plane containing the line of 

sight. Note that the effective coherent integration time is limited to tf  tc, since the 

signal phase is decorrelated over longer periods. 

4.5.2.2 Frequency Diversity 

Radars often use frequency diversity or agility to obtain additional independent 

echo samples [2, p. 87, Eq. (2.61)]: 

 1ef

c

f
n n

f


    (4.61) 

Here f is the band over which the radar frequency is varied and fc is the correla-

tion frequency of the target [2, p. 87, Eq. (2.62)]: 
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c

r

c
f

L
  (4.62) 

Here c is the velocity of light and Lr is the radial span of the target scatterers. The 

multiple frequencies may appear in subpulses within each pulse, or by variation 

between pulses. If m subpulses are used, the number of samples integrated in-

creases to n = mto/tf. The carrier frequency must not change during the coherent 

integration time tf. 
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4.5.2.3 Space Diversity 

Monostatic radars view a target over a single path such that the aspect angle of the 

target changes slowly with time, as expressed by a in (4.60). Multistatic radar 

uses multiple simultaneous paths and can take advantage of space diversity to 

obtain multiple independent samples on each pulse. When the angle  of the bi-

sector of transmitting and receiving paths, measured with respect to the target ax-

is, varies by , the number of independent signal samples is 

 1es

c

n


 


 (4.63) 

where c = /2Lx is the lobe width of the reflection pattern of the target, measured 

on a two-way path. 

4.5.2.4 Polarization Diversity 

Orthogonally polarized antenna channels are rare in radar, but if present they may 

increase the number independent echo signals by nep = 2. There are only two or-

thogonal polarizations (e.g., vertical and horizontal, right- and left-hand circular, 

or any pair of orthogonal elliptical polarizations). 

4.5.2.5 Available Independent Samples 

The number of independent signal samples integrated during the dwell time is 

 e et ef es epn n n n n n   (4.64) 

The Marcum/Swerling models for which detectability factors were derived above 

can represent the following target and radar descriptions: 

Case 0:  A single scatterer, a corner reflector with fixed aspect angle, or a 

spherical target, modeled by ne  ; 

Case 1:  Rayleigh target, to << tc with fixed-frequency radar, giving ne = 1; 

Case 2:  Rayleigh target, tr  tc or f /fc  n, or a combination giving ne = n; 

Case 3:  Rayleigh target, to << tc with dual-frequency or dual-polarization ra-

dar, giving ne = 2; 

Case 4:  Case 2 with space or polarization diversity, giving ne = 2n. 
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Thus the Swerling models describe not different target types, but rather the echo 

signals received from the multiple-scatterer target viewed by radars with different 

degrees of diversity. An aircraft or other complex target will be Case 1 for fixed-

frequency radar unless to is at least a significant fraction of tc. For aircraft viewed 

at microwave frequencies, tc > 0.1s is normal, and for typical integration times 

1 < ne < 1.5. In order for a target to approach Case 2, tc must approach the pulse 

repetition interval tr, implying (even for millimeter-wave radar) aspect angle rates 

exceeding those normally experienced. Thus, radar-target situations typically give 

ne  1, unless frequency diversity or agility, space diversity, or polarization diver-

sity is used. 

4.6 VISIBILITY FACTOR 

Useful data on detection performance of human operators, viewing cathode-ray-

tube displays, are very limited. During World War II, experiments were performed 

at the MIT Radiation Laboratory to determine the visibility factor for different 

types of display. One result is the PPI visibility factor V0(50), applicable to 

Pd = 50% on a steady target under optimum viewing conditions, shown in Figure 

5.13. Blake [17, p. 2] notes that that this curve is applicable to intensity-modulated 

displays generally, and states that it is 

based on Figs. 8.2 and 9.2 of [18] or Figs 1 and 21 of [19], adjusted to 0.5 probability and ex-

trapolated to single-pulse detection, with slight revision of slopes as ends of the curve. 

It is impossible to determine the false-alarm probability for the process represent-

ed by Figure 5.13. A typical PPI displays about 10
5
 radar resolution cells and pre-

sents data over a scan period of  10s. Hence, if a single false alarm per scan re-

sults from the process, Pfa = 10
6

 can be assumed. Comparing the single-pulse 

value V0(50) = 13.2 dB with the steady-target detectability factor D0 = 11.2 dB for 

Pd = 50%, Pfa = 10
6

, it can be seen that the visual detection process incurs a loss 

of some 2 dB compared with electronic detection on a single output of a matched 

filter. The bandwidth correction factor Cb appearing in (1.16) is in addition to that 

2-dB loss, so for Cb = 0 dB there is still a 2-dB reduction in performance relative 

to the matched filter with electronic detection.  

When other than Pd = 0.50 and Pfa = 10
6

 on steady targets is required, the V0 

data offer no guidance as to the change in required energy ratio. An approximation 

can be made based on the data developed for electronic detection in previous sec-

tions of this chapter. Adjustments for nonoptimum viewing conditions and opera-

tor performance are discussed in [18], but, as Blake notes in [20, p. 370]: 

The concept of operator loss is also sometimes employed, to describe the increase in D0 re-
quired by a typical operator compared to an ideal integrator. However, again the approach 

here has been to express D0 directly … as the value applicable to an actual human operator. 
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The operator loss tends in practice to become an arbitrary factor to account for observe dis-
crepancies between computer performance and observed radar performance; and while in 

some cases it may be a valid explanation, in others it may be misused to conceal ignorance to 

why a radar’s actual performance is less than predicted by calculations. In any case, it is too 
vague a concept to employ in a range calculation aimed at evaluating the merit of a particular 

radar design or for other engineering purposes. 

Omitted from that discussion is the difference between D0 for electronic detection 

with a matched filter and V0 for visual detection with a receiver noise bandwidth 

Bn = 1.2/ and a video bandwidth restricted by resolution on the display. That is-

sue requires that visual detection procedures include losses different from those 

used in electronic detection. 

 

Figure 4.13  Visibility factor V0(50) for PPI display under optimum viewing conditions [17]. 
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4.7 SUMMARY OF DETECTION THEORY 

This chapter presented methods for calculating the basic detectability factor, based 

on detection theory, for target models including the steady target (Case 0), fluctu-

ating targets described by Swerling Cases 1–4, and the more general class of tar-

get echoes having chi-square distributions with an arbitrary number of degrees of 

freedom.  

 Exact expressions for Pd that are accurate to within 0.01 dB in the correspond-

ing signal-to-noise ratios are available from [6] for Cases 0–5. Solutions to 

these expressions using root-finding methods are thus able to give the detect-

ability factors to that accuracy.  

 Approximations for calculating D(n) that approach this accuracy for most 

cases of practical interest have also been presented, with plots that compare 

their results with the solutions for D(n) obtained by root-finding from the ex-

act equations.  

 The value of D(n) includes two factors that may or may not appear as sepa-

rate terms: the integration loss Li(n) (see Section 4.4.3) and the fluctuation 

loss Lf (see Section 4.4.5). Both these losses increase D(n) relative to a theo-

retical minimum value given by D01/n that would apply to a steady signal in-

tegrated coherently. They must be included as components of system loss Ls 

when the search radar equation is used, but need not be evaluated individually 

for use in the normal radar equation. 

 Any radar equation requires, once D(n) has been found, that a series of practi-

cal losses be calculated for the practical radar under consideration. The Blake 

chart described in Section 1.3.2 has separate entries for a bandwidth correc-

tion factor Cb, a beamshape loss Lp, and a miscellaneous loss Lx. The chart as 

modified in Section 1.4.2 includes Lp and Lx, and substitutes a matching fac-

tor M for Cb.  

 The beamshape loss Lp, is the subject of Chapter 5, and the matching factor M 

along with a number of components of Lx are discussed in Chapter 10. The 

effective detectability factor Dx(n) used in radar equations (1.19)–(1.23) is 

calculated as the product of these losses and D(n). Thus Dx includes the losses 

that increase the required signal-to-noise energy ratio.  

 Losses that reduce the available energy ratio, including RF loss Lt, atmospher-

ic loss L, other losses that depend on range, are included as separate factors 

in (1.26). 
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CHAPTER 5 

Beamshape Loss 

The basic detectability factors derived in Chapter 4 could be used directly in the 

radar equation for an idealized radar design only if the signal were transmitted and 

received with constant two-way antenna gain GtGr during the time to required to 

collect n pulses or n coherently integrated samples of the signal, and if matched 

filtering and ideal post-detection integration were used. For a given antenna, var-

iation in gain is represented in the radar equation by the product ft fr that is includ-

ed in the pattern-propagation factor F
2
 = FtFr (see Chapter 8). When a radar scans 

in angle to detect a target, the gain varies either during to (for continuous scan) or 

from one scan or beam dwell to another (for electronic raster scan or step-

scan).The effect of the resulting pattern modulation on the n pulses used in calcu-

lating D is expressed by the beamshape loss (or beamshape factor), denoted by Lp. 

This loss is discussed in this chapter for different target types and processing 

methods. It applies both to search radar and to tracking radar in its acquisition 

mode. In most cases the tracking radar after acquisition holds its beam close 

enough to the target to achieve the on-axis antenna gain, and no beamshape loss 

occurs in that mode of operation. 

5.1 BACKGROUND 

5.1.1 Definition of Beamshape Loss 

Beamshape loss is defined [1] as: 

A loss factor included in the radar equation to account for the use of the peak antenna gain in 
the radar equation instead of the effective gain that results when the received train of pulses is 

modulated by the two-way pattern of a scanning antenna. Synonym: antenna-pattern loss. 
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Recall that the number of integrated pulses n for a scanning radar is conven-

tionally calculated as the number received while the target is within the one-way, 

half-power beamwidth 3. The detection probability is conventionally calculated 

assuming integration of n pulses of equal level, and the inclusion of the loss com-

ponent Lp in radar equation is intended to ensure that the on-axis signal power is 

high enough that the detection probability Pd can be calculated as though all n 

pulses had been received with the on-axis antenna gain. Figure 5.1 shows a se-

quence of pulses received from a Gaussian beam scanning in one dimension, 

where n = 10 and the on-axis power is Lp = 1.33 times the power in the rectangular 

reference beam. This peak level of the modulated train has been set to make the 

energy of the modulated train equal to that of the rectangular beam. To recover 

that energy in signal processing, the integrator weighting must match the two-way 

Gaussian pattern of the beam, with significant contributions in the case illustrated 

from about 16 pulses rather than only the 10 within the half-power beamwidth. 

5.1.2 Sampling in Angle Space 

The scanning radar performs sampling the angle space. For one-dimensional (1-D) 

scanning, a sample is either an individual pulse of the continuously scanning pulse 

train or the n-pulse group of a step-scanned antenna.
1
 Each line in the search raster 

for two-dimensional (2-D) scanning is sampled first in the coordinate of rapid 

scanning. With electronic step-scanning, the n pulses have the same amplitude, 

but that amplitude varies with the position of the target relative to the axis of the 

                                                           
1  When step scans or raster scans are used, n is to be interpreted as the number of groups or scan lines 

per beamwidth. 
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Figure 5.1  Pulse train modulated by Gaussian beam scanning in one dimension with n = 10 pulses. 

The energy of the entire modulated train with on-axis power Lp1 = 1.33 is equal to that of 10 pulses 
of power 1.0 in the rectangular reference beam shown by the heavy dashed line. 
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beam and has a Gaussian distribution when targets are uniformly distributed in 

angle. The successive scan lines in 2-D scanning provide samples in the other 

coordinate, usually combined through the cumulative probability of detection, 

defined as the probability that detection occurs on at least one line of the scan ra-

ther than by integration (see Section 10.2.5). 

The angular sampling interval  is defined here in units of the one-way, half-

power beamwidth 3 in the angle coordinate of interest.
2
 Radars normally obtain 

samples that are spaced by   0.71, which can be described as dense sampling, 

and for which n  1.41. The beamshape loss is then simply the ratio of the target 

echo energy that would have been received if the beam were rectangular, with 

widths equal to the half-power widths of the actual beam, to the energy received 

during the scan by the actual beam pattern. The center of the beam in 1-D scan-

ning is assumed to pass directly across the target. When it does not, the pattern-

propagation factor F is applied in the unscanned coordinate to account for the re-

duced signal.  

Sampling intervals  > 0.71 provide sparse sampling in angle space. The 

beamshape loss is no longer a simple ratio of average energy received in the scan-

ning beam to that of a rectangular reference beam. Rather, it must be defined as 

the increase in on-axis power required to achieve an average probability of detec-

tion Pd equal to what would have been achieved for a target lying on the beam axis 

during all n pulses. The average Pd over angle space cannot be found by integrat-

ing n samples whose total energy is n times that of the average sample. This is 

because, in seeking to obtain Pd > 0.4, the reduced Pd for samples near the edge of 

the beam pattern reduces the average Pd more than it is increased by samples near 

the axis. 

5.1.3 Literature on Beamshape Loss 

5.1.3.1 Dense Sampling 

Beamshape loss was introduced in Blake’s 1953 paper [2]. He expresses the loss 

in terms of a reduction in the number of full-amplitude (on-axis) pulses that would 

provide the same total energy as obtained from the pulse train modulated by the 

pattern of the scanning beam. Blake considers an exponential beam than scans 

across the target, delivering pulses to a receiver using a square-law detector. The 

improvement from integration of the received pulse train is given in terms of inte-

grals over the portion of the beam pattern that lies within a rectangular integration 

window, from which he derives the optimum window width and integration gain. 

He expresses the result in terms of an equivalent number of equal-amplitude puls-

                                                           
2  In electronic scanning from an array antenna, it will be assumed that the intervals  are constant in 

sine space, maintaining their values relative to the varying beamwidth at off-broadside angles. 
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es given by 0.473n, assuming initially n >> 1 and uniform integrator weighting 

over the optimum angular interval 0.8443. Because large n implies low single-

pulse signal-to-noise ratio (snr), the integration gain is proportional to .n  

To retain detection probability when the target does not remain on the axis 

during the n pulses used for integration, the on-axis signal power must be in-

creased by the factor Lp = 1 0.473 1.45 1.6 dB  . For lower pulse densities, 

but excluding the sparse sampling case, Blake derives the available integration 

gain using summations rather than integrals, and concludes that the results agree 

closely with the high-density case.  

In the addendum [3] to his paper, Blake notes that for a linear detector giving 

integration gain proportional to n, the optimum integration interval is 1.23 and 

the loss is Lp = 1/0.67 = 1.5 = 1.7 dB. He subsequently presents the range calcula-

tion [4] in the form now known as the Blake chart that includes an entry for Lp. He 

suggests the following values as a simple model for beamshape loss:  

 Lp1 = 1.6 dB for one-coordinate (1-D) scanning;  

 Lp2 = 2Lp1 = 3.2 dB for two-coordinate (2-D) scanning.  

where the primed symbols denote values in decibels. We will consider in Sections 

5.1.3 and 5.3–5.5 the relationship between this simple beamshape loss model and 

results of subsequent studies.  

5.1.3.2 Sparse Sampling  

Studies on beamshape loss by Hall and Barton [5,6] consider lower sample densi-

ties (0.5 < n < 2), such as might occur in radars using electronic scan, or in two-

dimensional (2-D) scans where successive beam dwells and scan lines are spaced 

in the order of the beamwidth. The beamshape loss, expressed as the increase in 

on-axis signal power needed to maintain a given Pd for targets uniformly distribut-

ed in angle space with respect to sample points, is found to depend strongly on Pd, 

sample spacing, processing method, and the target fluctuation model. 

Analytical approximations for beamshape loss with sparse sampling are given 

by Barton in [7, p. 137; 8, p. 494; 9, p. 87]. The procedures for generating these 

approximations are refined in this chapter to obtain more accurate models for dif-

ferent scan patterns and targets over the range of sampling densities and detection 

probabilities typically required in calculation of detection range. 
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5.2 BEAMSHAPE LOSS WITH DENSE SAMPLING 

5.2.1 Simple Beamshape Loss Model 

The loss in signal energy for matched weighting of the integrator is calculated by 

integrating the two-way power pattern of the beam as its axis moves over the scan 

path relative the target position. The loss for 1-D scanning, denoted by the sub-

script p1, is: 

  
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where f () is the one-way voltage pattern of the beam in the scanned coordinate . 

For a 2-D scan in coordinates  and , with an antenna having identical, separable 

illuminations, we denote the loss by a subscript p2: 
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 (5.2) 

5.2.2 Antenna Patterns 

A common model for the radar antenna voltage pattern
3
 is the Gaussian beam, 

which closely follows the pattern of most antennas out to about the 10 dB level, 

but has no sidelobes: 

    
2

2

3

exp 2 ln 2gf
 

   
 

 (5.3) 

At the other extreme, the uniformly illuminated rectangular antenna, for which the 

sidelobes are 13.6 dB relative to the on-axis gain, has a voltage pattern: 

  
   3 3

3 3
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 (5.4) 

                                                           
3  Beamwidths are assumed to be narrow enough to justify the small-angle approximation sin  . 
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An intermediate example is the cosine-illuminated rectangular antenna, with first 

sidelobes 23 dB relative to the on-axis gain and a voltage pattern: 

  
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 (5.5) 

where K = 1.1889 is the beamwidth constant for angle in radians. Another inter-

mediate example, with nonseparable illuminations, is the uniformly illuminated 

circular antenna, for which the sidelobes are 17.6 dB relative to the on-axis gain: 
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 (5.6) 

where J1(·) is the first-order Bessel function of the first kind. The 2-D beamshape 

loss in this case is calculated by integration of elemental rings having equal radius 

 from the axis: 

  4

2cir cir

0

2pL f d



      (5.7) 

When the transmitting and receiving beamwidths t and r differ, the effective 

beamwidth to be used in the preceding equations is 

 3 eff
2 2

2 t r

t r

 
   

  
 (5.8) 

5.2.3 Beamshape Loss for Different Patterns 

The 1-D and 2-D beamshape losses for the Gaussian beam are given exactly by: 

 1

8ln 2
1.3288pL  


 (5.9) 

 
2

8ln 2
1.7658pL  


 (5.10) 

Values of beamshape loss for other illuminations are shown in Table 5.1. It can be 

seen that calculations using the Gaussian pattern model adequately express the 
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beamshape loss in all these cases, and hence can be used for other radar antenna 

patterns. The value of Lp2 is the same as derived in expressing volume resolution 

cell containing precipitation used in the weather radar equation [10, p. 74, Eq. 

(4.13)]. 

Nominal values with adequate accuracy for any radar beam pattern are shown 

in the last row of the table, expressed to two decimal places. The 1.24 dB loss for 

1-D scan, to be used extensively as a reference, will be denoted here by Lp0.  

Table 5.1  Beamshape Loss for Commonly Used Pattern Models 

Pattern Model 1-D Scan 2-D Scan 

 Lp1 (power ratio) Lp1 (dB) Lp1 (power ratio) Lp2 (dB) 

Gaussian 1.3280 1.234 1.7651 2.468 

Uniform rectangular 1.3290 1.235 1.7697 2.479 

Cosine rectangular 1.3317 1.244 1.7733 2.488 

Uniform circular 1.3314 1.245 1.7742 2.549 

Typical radar beam 1.33 1.24 1.77 2.48 

The values shown in Table 5.1 are beamshape losses used in the normal radar 

equation for dense sampling ( < 0.71). As will be shown below, the search radar 

equation and the normal equation with sparse sampling require loss values that 

vary with , approaching the values of Table 5.1 only in special cases.  

5.3 SPARSE SAMPLING IN 1-D SCAN 

Radars that perform search with narrow beams must generally minimize the time 

allocated to searching a given angle space, which may lead to sparse sampling 

(beam dwells spaced by  > 0.71). The beamshape loss then depends on the re-

quired detection probability Pd, the spacing, the integration procedure, and the 

target fluctuation model.  

When using radar equations developed in Chapter 1 it is assumed that the 

scan pattern of the radar has been taken into account in calculating the radar pa-

rameters, and that the transmitted energy per beam dwell is constant (independent 

of the spacing of the dwells). If spacing less than the beamwidth is used, more 

energy is allocated to a given solid angle. On the other hand, when the search ra-

dar equation of Chapter 2 is used, the transmitted energy per scan is constant, be-

cause in the derivation of the equation the idealized rectangular beams were as-

sumed to be contiguous with no overlap. This changes the reference used in calcu-

lation of beamshape loss, as explained in Section 5.3.5. Spacing of dwells closer 

than the beamwidth then reduces the available energy per dwell. Hence, the 
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beamshape loss required for use in the search radar equation differs from that used 

in the normal radar equation.  

5.3.1 Method of Calculation for 1-D Scan 

The number of samples n available for integration is the reciprocal of the beam 

spacing  in beamwidths. Sparse sampling,  > 0.71, corresponds to n < 1.41. We 

will assume that the integrator weighting function is matched to the beam pattern, 

so that the output snr depends on the total signal energy received during the scan. 

A small integration loss, increasing for n > 1, appears separately in calculation of 

the basic detectability factor, Section 4.4.3. The procedure for selecting and aver-

aging sample positions and amplitudes to calculate beamshape loss is as follows. 

 Beam Spacing. The beam spacing k is expressed in units of the beamwidth 

3, and is varied over 0.5    1.5 to overlap with the dense sampling case 

and extend to the maximum practical beam spacing. To generate smooth out-

put plots, the spacing is varied in increments  = 0.05, giving k = k for 

k = 10, 11, …, 30. 

 Beam Angles. Three beams are denoted by m = 1, 2, 3, and are centered at an-

gles b(k,m) = (m  2)k, as shown in Figure 5.2. 

 Target Angles. To represent targets distributed uniformly in angle , five tar-

gets are placed at angles t( j,k) between the axis of beam 2 and a point half-

way to the axis of beam 3, as shown in Figure 5.2. The target index varies 

over j = 1, 2, …, jmax , where jmax = 5:  

    , 0.1 0.05t kj k j     (5.11) 

Beam 1
5 target

 Locations

Beamwidth 3

Beam spacing 


0-0.5

Angle in units of 

Beam 2

1.0-1.0

Beam 3

0.5

 

Figure 5.2  Beam and target locations for calculation of beamshape loss with 1-D scan. 
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 Off-Axis Angles. The angle between target position t( j,k) and the axis 

b(k,m) of beam m is calculated to obtain a three-dimensional matrix of off-

axis angle for each signal sample: 

      , , , ,b tj k m k m j k     (5.12) 

 Sample SNR. The snr for each sample is calculated using the beam pattern 

fcos() of an aperture with cosine illumination from (5.5). That pattern closely 

represents that of many practical radars, in which the mainlobe is bounded by 

nulls, with a first sidelobe level of 23 dB. The result is a four-dimensional 

matrix: 

    4, , , , ,i cs i j k m s f j k m     (5.13) 

where si is the on-axis snr. This snr is varied in decibel steps: si = 0, 1, …, 35 

dB to cover the desired values of Pd. Different procedures are then used to 

calculate Lp1, depending on the target model and signal processing method.  

5.3.2 Steady-Target Beamshape Loss for 1-D Scan 

The steps in calculating beamshape loss for the steady target with two processing 

methods of combining the signals are listed in Table 5.2. 

The subscript {0} denotes the steady target. The detectability factors in (5.17) 

and (5.23) are calculated for four values of detection probability to be used in sub-

sequent plots of beamshape loss: Pdu = 0.1u, where u = 3, 5, 7, 9. The reference 

detectability factor Dr{0} given by (5.18) is obtained from (4.18), adjusted for co-

herent integration of the nk = 1/k signal samples that would be received in the 

rectangular reference beam of Figure 5.1. Integration loss is a separate component 

of Dx in the radar equation. For  > 1, a single sample with power 1/k is assumed 

in calculating the reference Dr{0}. 

5.3.2.1 Steady Target with Integration 

The 1-D beamshape loss Lp1{0} for a steady target with integration is shown in 

Figure 5.3. Curves for all values of Pd merge with the dense-sample value 

Lp0 = 1.24 dB for spacings  < 0.71. For  > 0.71 and Pd  0.45, the loss drops 

below Lp0 because the increase in Pd near the axis more than compensates for the 

decrease near the edge of the beam. Increasing loss for k > 0.8, Pd > 0.45 con-

firms the results of [5, 6]. Since spacings   1.5 cause losses that are excessive 

for most radar applications, the data presented here are limited to   1.5.  
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Table 5.2  Steps in Calculating Beamshape Loss for 1-D Scan, Steady Target 

Integration over entire scan 

(1) Sum signals from all m beams    , , , , ,i

m

S i j k s i j k m  (5.14) 

(2) Detection probability for inte-

grated signal        0
, , 2ln 1 2 , , 1fa idi

P i j k P S i j k    
  

 (5.15) 

(3) Average Pdi{0} over target posi-

tions 
   {0} {0}

max

1
, , ,d di

j

P i k P i j k
j

   (5.16) 

(4) Detectability factor with 

beamshape loss 
   {0} {0}, ,   root ,p x i d duD k u s x P i k P   

 
 (5.17) 

(5) Reference detectability factor      
2

1

{0} , 2ln 1 1
2

k
r fa duD k u P P         

 (5.18) 

(6) Beamshape loss      1{0} {0} {0}, , ,p p rL k u D k u D k u  (5.19) 

Cumulative detection over entire scan 

(1) Detection probability for single 

beam        1 0
, , , 2ln 1 2 , , , 1fad

P i j k m P s i j k m    
  

 (5.20) 

(2) Cumulative probability over all 
m beams 

   {0} 1{0}, , 1 1 , , ,c d

m

P i j k P i j k m      (5.21) 

(3) Average Pc{0} over all target 

positions 
   {0} {0}

max

1
, , ,c c

j

P i k P i j k
j

   (5.22) 

(4) Detectability factor with 

beamshape loss 
   {0} {0}, ,   root ,p x i c duD k u s x P i k P   

 
 (5.23) 

Steps (5) and (6) are the same as for integration. 
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Figure 5.3  Beamshape loss Lp1 versus sample spacing  for steady target with integration. A dashed 

line shows the dense-sample value Lp0 = 1.24 dB. 
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5.3.2.2 Steady Target with Cumulative Detection 

The cumulative detection probability is the probability that detection will be 

achieved in at least one of several attempts during the scan. With respect to 

beamshape loss, detection is attempted separately in each beam position (dwell). 

The results are shown in Figure 5.4. The loss now includes the effect the lower 

efficiency of cumulative detection, as compared with integration (see Section 

10.2.5). There is an optimum beam spacing near 0.75 beamwidths for high Pd, 

when cumulative detection over successive beam positions replaces integration. 

Thus it appears that integration of steady-target samples is worthwhile even when 

the number of samples per beamwidth drops to unity. 

5.3.3 Case 1 Beamshape Loss for 1-D Scan 

The steps in calculating beamshape loss for the Case 1 target with the two pro-

cessing methods of combining the signals are listed in Table 5.3. For integration, 

the steps are parallel to those used with the steady target, but substituting the Case 

1 terms Pd{1} from (4.26) and Dr{1} from (4.27) in steps (2) and (5). Because the 

samples of the Case 1 target are correlated over the scan, it is necessary to calcu-

late the cumulative probability of detection by first calculating Pc{0} for the steady 

target (see Table 5.2), and then finding Pc{1} by integrating Pc{0} over the exponen-

tial distribution that describes the Case 1 fluctuation from one scan to the next. 

Subsequent steps parallel those for the steady target.  
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Figure 5.4  Beamshape loss Lp1 versus sample spacing  for steady target with cumulative detection.  
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5.3.3.1 Case 1 with Integration 

The results for Case 1 with integration are shown in Figure 5.5. Compared with 

the steady target, the beamshape loss is less dependent on Pd, lying above 

Table 5.3  Steps in Calculating Beamshape Loss for Case 1 

Integration over entire scan 

(1) Add signals from m beams    , , , , ,i

m

S i j k s i j k m  (5.24) 

(2) Detection probability for integrat-

ed signal     {1} , , exp ln 1 , ,di fa iP i j k P S i j k     (5.25) 

(3) Average over j target positions    {1} {1}

max

1
, , ,di di

j

P i k P i j k
j

   (5.26) 

(4) Detectability factor for signal on 

beam axis 
   {1} {1}, , where   root ,p x i di duD k u s x P i k P   

 
 (5.27) 

(5) Reference detectability factor    1 , ln ln 1r k fa dD k u P P   
   (5.28) 

(6) Beamshape loss      1{1} {1} {1}, , ,p p rL k u D k u D k u  (5.29) 

Cumulative detection over entire scan 

(1) Steady-target detection probability 
in single beam 

     {0} , , , 2ln 1 2 , , , 1d faP i j k m P s i j k m    
  

 (5.30) 

(2) Steady-target cumulative probabil-

ity over m beams 
   {0} {0}, , 1 1 , , ,c d

m

P i j k P i j k m      (5.31) 

(3) Case 1 cumulative probability over 

m beams          {0}1 0
, , 1 exp , ,cc

P i j k s p s P p j k dp


   (5.32) 

(4) Average probability over j target 

positions 
   {1} {1}

max

1
, , ,c c

j

P i k P i j k
j

   (5.33) 

Steps (5–7) are the same as (4–6) for integration, with Pc{1} replacing Pdi{1}. 
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Figure 5.5  Beamshape loss Lp1 versus sample spacing k for Case 1 with integration.  
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Lp0 = 1.24 dB and below 4.2 dB for 0.5 <  < 1.5. This is because target fluctua-

tion causes the values of detectability factor for Case 1 targets to change more 

rapidly with varying Pd, masking the variation in signal power caused by the beam 

pattern. The beamshape loss for Case 1 is less than for the steady target for 

Pd > 0.65, and greater below that probability. 

5.3.3.2 Case 1 with Cumulative Detection 

The results for Case 1 with cumulative detection are shown in Figure 5.6. The loss 

is greater than with integration for all sample spacings. The optimum beam spac-

ing is near 0.95 beamwidths for high Pd. The loss shows less variation with Pd for 

 > 1 that was found with the steady-target. 

5.3.4 Case 2 Beamshape Loss for 1-D Scan 

The Case 2 target provides independent target amplitudes for each sample. For 

integration, however, the number of such independent samples in the three beams, 

used in calculating the probability of detection Pd{2} and reference detectability 

factor Dr{2}, depends on the weightings of samples in the matched integrator: 

 
 

    
2

2 2

max
4

max

1 1
, , , ,

, ,
e g g

j mg

n k m f j k m f j k m
j f j k m

 
           
    

   

  (5.34) 

where the terms  , ,x

gf j k m    are averages over the three beams, m = 1, 2, 3. 

Figure 5.7 shows the number of samples as a function of spacing of the beams. 
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Figure 5.6  Beamshape loss Lp1(k,u) versus sample spacing k for Case 1 with cumulative detection. 
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The reference detectability factors for the three target models are shown in Figure 

5.8, for a beam spacing k = 1, at which ne(k) = 1.5. The factor for Case 2 ap-

proaches that for Case 1 with large spacings, for which ne(k)  1, and approaches 

that for the steady target with small spacings, ne(k) >> 1. 

The steps in calculating beamshape loss for the Case 2 target with two pro-

cessing methods of combining the signals are listed in Table 5.4. For integration, 

the steps parallel those used with the steady target, but with substitution of the 

Case 2 terms Pd{2} from (4.36) in step (2) and Dr{2} from (4.37), adjusted for k, in 

step (5). 

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

Beam spacing in beamwidths

In
d

e
p

e
n

d
e

n
t
ta

rg
e

t
s
a

m
p

le
s

.

 

Figure 5.7  Number of independent target samples ne as a function of beam spacing k. 

0.3 0.4 0.5 0.6 0.7 0.8 0.9
10

11

12

13

14

15

16

17

18

19

20

21

22

Detection probability

R
e

fe
re

n
c
e

d
e

te
c
ta

b
il
it
y

fa
c
to

r
(d

B
)

.
Case 2 target

 

Figure 5.8  Reference detectability factors Dr{0,1,2} for 1-D scan with k = 1. 
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5.3.4.1 Case 2 with Integration 

The loss for Case 2 with integration is not illustrated because it is practically in-

distinguishable from that of Case 1 (Figure 5.5). There is slightly greater spread of 

the curves as   1.5, but the differences from Case 1 are less than 0.2 dB. 

5.3.4.2 Case 2 with Cumulative Detection 

The results for Case 2 with cumulative detection are shown in Figure 5.9. The 

results for  > 1 are between those for the steady target and Case 1. Because the 

reference detectability factor includes the diversity benefit of Case 2 with integra-

tion, relative to Case 1, the losses at  = 0.5 are spread slightly about the value 

that applies to the steady target and Case 1, and the beamshape loss for Pd > 0.3 is 

higher than for Case 1. This does not imply that greater snr is necessary, however, 

because the reference value has been reduced by a greater amount than the in-

crease in Lp. 

Table 5.4  Method of Calculating Beamshape Loss for Case 2 Target 

Integration over entire scan 

(1) Add signals from m beams    , , , , ,i

m

S i j k s i j k m  (5.35) 

(2) Detection probability for inte-
grated signal with n(k) target 

samples 
   

   

   
 

1

2

1 ,1 1
, , 1 ,

1 , , 1

fa e

ed

e i

P P n k
P i j k P n k

n k S i j k







      
   

     

 (5.36) 

(3) Average Pd{2} over target posi-

tions 
     {2} 2

max

1
, , ,d d

j

P i k P i j k
j

   (5.37) 

(4) Detectability factor with 

beamshape loss 
   {2} {2}, ,  where   root ,p x i d duD k u s x P i k P   

 
 (5.38) 

(5) Reference detectability factor  
   

 
 

1

2 1

1 ,1 1
, 1

1 ,
u

fa e

r k e

d e

P P n k
D k u n k

P P n k









      
   

    

 (5.39) 

(6) Beamshape loss      1{2} {2} {2}, , ,p p rL k u D k u D k u  (5.40) 

Cumulative detection over entire scan 

(1) Detection probability for single 

Rayleigh sample 
    {1} , , , exp ln 1 , , ,d faP i j k m P s i j k m     (5.41) 

(2) Cumulative probability over m 

beams 
    {2} 1{1}, , 1 1 , , ,c d

m

P i j k P s i j k m       (5.42) 

(3) Average probability over target 

positions 
   {2} {2}

max

1
, , ,c c

j

P i k P i j k
j

   (5.43) 

Steps (4–6) are the same as for integration, with Pc{2} replacing Pd{2}. 
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5.3.5 Beamshape Loss Used in the Search Radar Equation for 1-D Scan 

The search radar equation is based on uniform distribution of the energy transmit-

ted during the frame time ts among contiguous dwells of the idealized rectangular 

beam ( = 1) covering the defined search sector. With continuous scan, the 

“dwell” can be considered the processing time leading to a detection decision, 

while in step-scan it is the dwell time of each step.  

The energy per dwell must be reduced for actual beam spacings  < 1, and 

increased for  > 1, to keep the total energy during ts constant. Application of the 

search radar equation to 1-D scan thus requires that the energy per dwell vary di-

rectly with the spacing . When calculating beamshape loss as a function of , it 

is convenient to include this variation of energy as contributing to a net 

beamshape loss Lpn1 for use in the search radar equation. The result is 

  
 1

1

,
,

p

pn

k

L k u
L k u 


 (5.44) 

The procedure for calculating net beamshape loss Lpn1 is the same as for Lp1, 

except that the sample snr given by (5.13) is replaced by: 

    4, , , , ,k i cs i j k m s f j k m      (5.45) 

The net effect on beamshape loss of reapportionment of energy is shown in 

Figures 5.10 and 5.11 for steady and Case 1 targets with integration. The data 
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Figure 5.9  Beamshape loss Lp1(k,u) versus sample spacing k for Case 2 target with cumulative  

 detection. 
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suggest that the optimum beam spacing with integration is   1.1 for Pd = 0.9, 

increasing as Pd is reduced. 

An electronically scanned search might perform a pseudorandom scan rather 

than a deterministic step-scan. In this case, integration over adjacent beams might 

be too difficult to perform, and the cumulative detection process would be used. 

The net beamshape loss with cumulative detection is shown in Figures 5.12 and 

5.13 for steady and Case 1 targets. Optimum spacing for the steady target is the 

same as for integration of the signal, increasing to k = 1.2 for Case 1. The losses 

for optimum spacing are Lpn1 = 3.1 dB for the steady target and Lpn1 = 1.9 dB for 

the fluctuating target.  

Net beamshape loss curves for other fluctuating targets are not included here, 

since Case 1 is the predominant type for which radar systems must be designed, 

and Case 2 results lie between those for the steady target and Case 1. 
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Figure 5.10  Net beamshape loss Lpn1 versus sample spacing k for steady target with integration.  
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Figure 5.11  Net beamshape loss Lpn1 versus sample spacing k for Case 1 with integration,  
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5.4 SPARSE SAMPLING IN 2-D RASTER SCAN 

The 2-D raster scan uses a rectangular beam grid, as shown in Figure 5.14. The 

target locations used to find averages over angle space occupy one quadrant of the 

center beam. Analysis of beamshape loss is more complicated than for 1-D scan, 

but can be simplified by assuming the same beam spacing for the two coordinates, 

as is usually the case. Although the figure shows circular beams, the analysis is 

applicable to elliptical beams where the spacing is scaled to the beamwidth in 

each coordinate. 

A second complication is that any of three processing methods may be used: 

integration or cumulative detection over the entire scan or integration across each 

line followed by cumulative detection over the three lines, which we will call 

mixed processing.  
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Figure 5.12  Net beamshape loss versus sample spacing k for steady target with cumulative detection. 
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Figure 5.13  Net beamshape loss versus sample spacing k for Case 1 with mixed processing. 
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A third complication is that four target models must now be considered, ra-

ther than three:  

 Steady target: Equal signal power for all samples in the scan; 

 Case 1 target: Fluctuating power, correlated over the entire scan (Case 1); 

 Case 2 target: Fluctuating power, decorrelated from dwell to dwell (Case 2); 

 Diversity target: Fluctuating power, correlated over each line but decorrelated 

between successive lines of the scan. The decorrelation results from some 

form of diversity, and this target case will be denoted by the subscript D.  

Although procedures for analysis of all four models are presented, only re-

sults for the last three cases are given, as the steady target is seldom encountered. 

Chi-squared statistics for the fluctuating target will be treated, and other models 

can be analyzed using the procedure described for chi-squared targets. Analytic 

approximations for the steady-target beamshape loss in other cases are presented 

in Appendix 5A. The results for integration may be found as the square (twice the 

decibel value) of the losses shown in Figure 5.3 for 1-D scan. 
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Figure 5.14  Beam grids and target sample positions for 2-D raster scan. 
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5.4.1 Method of Calculation for 2-D Scan 

The geometry for 2-D scan is similar to that in Section 5.3.1 for the 1-D scan, with 

the following changes:  

 Beam Spacing. The beam spacing 0.5  k  1.5 beamwidths remains the 

same as for the 1-D scan, and is applied equally to both angle coordinates. 

 Beam Angles. There are nine beams, denoted by subscripts m = 1, 2, ..., 9, 

with axes located at positions m(k,m) = xk, m,yk, m, as shown in Figure 5.14. 

The three scan lines are denoted by a = 1, 2, 3, each containing three beams 

m1(a)  m  m2(a). For example, m1(1) = 1 and m2(1) = 3. 

 Target Angles. There are 25 target positions t( j,k) = xj, m,yj, m, as shown in 

Figure 5.14, where j = 1, 2, ..., 25.  

The coordinate x is understood to be the coordinate of the more rapid scan 

line, over which integration is more easily performed. It may be either azi-

muth, elevation, or a coordinate in sine space. The orthogonal coordinate is y. 

 Off-Axis Angles. The off-axis angle from the center of each beam to each tar-

get location is calculated as 

      
2 2

, , , ,, , k m j m k m j mj k m x x y y      (5.46) 

before applying (5.13). Angles , x, and y are expressed in units of the beam-

width 3. 

 Sample SNR. Calculation of the sample snr s(i, j,k,m) is the same as for the 1-

D scan, using (5.13). 

5.4.2 Steady-Target Beamshape Loss for 2-D Scan 

The steps for integration and cumulative detection over the entire scan remain as 

listed in Table 5.2, but with k
2
 replacing k in the reference detectability factors 

of step (5), and the 2-D loss Lp2 replacing Lp1. The upper limits for m and j are 9 

and 25, respectively. 

The steps in calculation for mixed processing are listed in Table 5.5. Data for 

the steady target are not plotted here because it has been found that a close ap-

proximation can be obtained by squaring the 1-D loss (doubling the decibel value) 

from Figures 5.3 and 5.4. 
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5.4.3 Case 1 Beamshape Loss for 2-D Scan 

The steps for integration and cumulative detection over the entire scan are as 

listed in Table 5.3 for 1-D scan, but with k
2
 replacing k in the reference detecta-

bility factors of step (5). Limits for m and j are changed to 9 and 25, respectively. 

5.4.3.1 Case 1 with Integration 

The results for Case 1 with integration are shown in Figure 5.15. The beamshape 

loss lies above 2Lp0 = 2.48 dB and below 9.6 dB for 0.5 < k < 1.5. Compared 

Table 5.5  Steps in Calculating Beamshape Loss for Steady Target with Mixed Processing 

(1) Sum signals from each beam in 

lines a = 1, 2, 3 
   

 

 2

1

, , , , , ,
m a

i

m m a

S i j k a s i j k m


   (5.47) 

(2) Detection probability for inte-

grated signal in line a      {0} , , , 2ln 1 2 , , , 1di fa iP i j k a P S i j k a    
  

 (5.48) 

(3) Cumulative probability over all 

lines 
   

 

 2

1

{0} {0}, , 1 1 , , ,
m a

di di

m m a

P i j k P i j k a


      (5.49) 

(4) Average Pdi{0} over target posi-

tions 
   {0} {0}

max

1
, , ,di di

j

P i k P i j k
j

   (5.50) 

(5) Detectability factor with 

beamshape loss    {0} {0}, ,   root ,p x i di duD k u s x P i k P   
 

 (5.51) 

(6) Reference detectability factor      
2

1

{0} , 2ln 1 1
2

k
r fa duD k u P P         

 (5.52) 

(7) Beamshape loss      2{0} {0} {0}, , ,p p rL k u D k u D k u  (5.53) 
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Figure 5.15  Beamshape loss Lp2 versus sample spacing k for Case 1 with integration. A dashed line is 

shown for the dense-sample value Lp2 = 2.48 dB. 
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with the Case 1 loss for the 1-D scan, it is seen that the 2-D loss is almost exactly 

the square of the 1-D loss (twice the decibel value). 

5.4.3.2 Case 1 with Cumulative Detection 

The results for Case 1 with cumulative detection are shown in Figure 5.16. The 

lower efficiency of the cumulative detection process is included, increasing the 

loss for small sample spacings. As was the case with integration, the 2-D loss is 

approximately the square of the 1-D loss. 

5.4.3.3 Case 1 with Mixed Processing 

The steps in calculating beamshape loss for the Case 1 target with mixed pro-

cessing are listed in Table 5.6. Step (1) performs integration over each line a = 1, 

2, 3. Step (2) gives the corresponding steady-target detection probabilities, and 

step (3) forms the steady-target cumulative probability. Step (4) converts to the 

Case 1 cumulative probability Pm. Steps (5)–(8) parallel (3)–(6) of Table 5.3. 

The Case 1 beamshape loss with mixed processing is shown in Figure 5.17. 

The cumulative detection loss is reduced by integration over each line, so the loss 

at  = 0.5 drops to 4.5 dB, which is midway between the losses at that spacing for 

integration and cumulative detection over the entire scan. The loss for large 

spacings approaches that for cumulative detection over the entire scan. 
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Figure 5.16  Beamshape loss Lp2 versus sample spacing k for Case 1 with cumulative detection.  
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5.4.4 Case 2 Beamshape Loss for 2-D Scan 

The steps for integration and cumulative detection over the entire scan remain as 

listed in Table 5.4, but with k
2
 replacing k in the reference detectability factors 

of step (5). The upper limits for m and j are 9 and 25, respectively. The number of 

independent target samples within the mmax = 9 beams of the 2-D scan is given by 

Table 5.6  Steps in Calculating Beamshape Loss for Case 1 with Mixed Processing 

(1) Add signals from beams in line 
a (5.47) 

   
 

 2

1

, , , , , , ,
m a

i

m m a

S i j k a s i j k m a


    

(2) Steady-target detection proba-

bility for integrated signal in 

line a (5.48) 

     {0} , , , 2ln 1 2 ,, , , 1di fa iP i j k a P S i j k a    
  

  

(3) Steady-target cumulative proba-

bility over all lines (5.49) 
   

 

 2

1

{0} {0}, , 1 1 , , ,
m a

c di

m m a

P i j k P i j k a


       

(4) Case 1 cumulative probability 

over all lines          {0}1 0
, , 1 exp , ,cc

P i j k s p s P p j k dp


   (5.54) 

(5) Average Pmi{1} over all target 

positions 
   {1} {1}

max

1
, , ,c c

j

P i k P i j k
j

   (5.55) 

(6) Detectability factor with 

beamshape loss 
   {1} {1}, ,   root ,p x i c duD k u s x P i k P   

 
 (5.56) 

(7) Reference detectability factor    1 , ln ln 1r k fa dD k u P P   
 

 (5.57) 

(8) Beamshape loss      2{1} {1} {1}, , ,p p rL k u D k u D k u  (5.58) 
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Figure 5.17  Beamshape loss Lp2 versus sample spacing k for Case 1 with mixed processing.  
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 
 

    
2

2 2

max
4

max

1 1
, , , ,

, ,
e c c

j mc

n k m f j k m f j k m
j f j k m

 
           
    

   

   (5.59) 

Figure 5.18 shows the number of samples as a function of beam spacing. The ref-

erence detectability factors for all target models (including the diversity target 

discussed in Section 5.4.5) are shown in Figure 19. It can be seen that the diversity 

target detectability factor lies midway between the Case 1 and Case 2 targets. 
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Figure 5.18  Number of independent target samples as a function of beam spacing, for 2-D scan.  
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Figure 5.19  Reference detectability factors Dr{0,1,2,D}(Pd) for 2-D scan with k = 1. 
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5.4.4.1 Case 2 with Integration  

The beamshape loss for the Case 2 target with integration is shown in Figure 5.20. 

As with the Case 1 target, the losses converge to the dense-sample value for 

 < 0.71. For high Pd, they are slightly greater than for Case 1 as  increases.  

5.4.4.2 Case 2 Target with Cumulative Detection  

The Case 2 target loss with cumulative detection over the entire scan is shown in 

Figure 5.21. The optimum spacing for Pd = 0.9 is   0.9, giving Lp2 = 5.8 dB, and 

the optimum shifts upward with decreasing Pd to   1.1 for Pd = 0.3. The rela-

tively large loss for  < 0.7 is the result of the inefficient cumulative detection 

process. The loss with cumulative detection is greater for Case 2 than for Case 1, 

but this is the result of the lower reference level Dr2 for Case 2, and does not im-

ply that Case 2 requires a greater snr for a given level of detection performance.  
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Figure 5.20  Beamshape loss Lp2 versus sample spacing k for Case 2 with integration.  

P d
 =

 0
.9

P d
 =

 0.7

Pd
 = 0.5

Pd
 = 0.3

2L’p0

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
2

3

4

5

6

7

8

9

10

Beam spacing in beamwidths

B
e

a
m

s
h

a
p

e
lo

s
s

in
d

B

.

 

Figure 5.21  Beamshape loss Lp2 versus sample spacing k for Case 2 with cumulative detection.  
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5.4.4.3 Case 2 with Mixed Processing 

The steps in calculating beamshape loss for the Case 2 target with mixed pro-

cessing are listed in Table 5.7. Step (1) performs integration over each line a = 1, 

2, 3. Step (2) gives the corresponding Case 2 detection probabilities, where ne1 is 

the number of independent target samples in a single line, given by (5.34) and 

Figure 5.7. Step (3) forms the Case 2 cumulative probability Pm{2}. Steps (4)–(7) 

parallel (3)–(6) of Table 5.4. 

The beamshape loss for Case 2 with mixed processing is shown in Figure 

5.22. The curves are similar to those of the Case 1 target (Figure 5.17). Optimum 

spacings vary from  = 0.8 for Pd = 0.9 to  = 1.05 for Pd = 0.3.  

5.4.5 Diversity Target Beamshape Loss for 2-D Scan 

The steps in calculating beamshape loss for the diversity target are listed in Table 

5.8 for integration and for cumulative detection over the entire scan. This target is 

defined as having Rayleigh fluctuation, with amplitudes correlated over each line 

but decorrelated from one line to the next. Hence, its correlation properties lie 

between Case 1 and Case 2.  

 

 

Table 5.7  Steps in Calculating Beamshape Loss for Case 2 with Mixed Processing 

(1) Add signals from beams 

in line a (5.47) 
   

 

 2

1

, , , , , , ,
m a

i

m m a

S i j k a s i j k m a


    

(2) Case 2 target detection 

probability for integrat-
ed signal in line a 

   
   

   
 

1

1

12

1

1 ,1 1
, , , 1 ,

1 , , , 1

fa e

ed

e i

P P n k
P i j k a P n k

n k S i j k a







      
   

     

 (5.60) 

(3) Case 2 target cumulative 

probability over all lines 
      

 

 2

1

{2} 2
, , 1 1 , , ,

m a

c d
m m a

P i j k P s i j k a


        (5.61) 

(4) Average Pmi{1} over all 

target positions 
   {2} {2}

max

1
, , ,c c

j

P i k P i j k
j

   (5.62) 

(5) Detectability factor with 
beamshape loss 

   {2} {2}, ,   root ,p x i c duD k u s x P i k P   
 

 (5.63) 

(6) Reference detectability 

factor  
   

 
 

1

2 1

1 ,1 1
, 1

1 ,
u

fa e

r k e

d e

P P n k
D k u n k

P P n k









      
   

    

 (5.64) 

(7) Beamshape loss      2{2} {2} {2}, , ,p p rL k u D k u D k u  (5.65) 
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Figure 5.22  Beamshape loss Lp2 versus sample spacing k for Case 2 with mixed processing.  

Table 5.8  Method of Calculating Beamshape Loss for Diversity Target 

Integration over entire scan 

(1) Add signals from m beams    , , , , ,i

m

S i j k s i j k m  (5.66) 

(2) Detection probability for 

signal with ne1(k) target 

samples (5.36) 
   

   

   
 

1

1

1

1

1 ,1 1
, , 1 ,

1 , , 1

fa e

ed D

e i

P P n k
P i j k P n k

n k S i j k







      
   

     

  

(3) Average Pd{2} over target 

positions 
     { }

max

1
, , ,d D d D

j

P i k P i j k
j

   (5.67)  

(4) Detectability factor with 

beamshape loss 
   { } { }, ,  where   root ,p D x i d D duD k u s x P i k P   

 
 (5.68) 

(5) Reference detectability 

factor  
   

 
 

1

1

1 ,1 1
, 1

1 ,
u

fa e
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P P n k
D k u n k
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


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      
   

    

 (5.69) 

(6) Beamshape loss      1{ } { } { }, , ,p D p D r DL k u D k u D k u  (5.70) 

Cumulative detection over entire scan 

(1) Detection probability for 

single steady sample      {0} , , , 2ln 1 2 , , , 1d faP i j k m P s i j k m    
  

 (5.71) 

(2) Cumulative probability 
over lines a = 1, 2, 3 

   
 

 2

1

{0} {0}, , 1 1 , , ,
m a

c d

m m a

P i j k P i j k m


      (5.72) 

(3) Case 1 cumulative proba-

bility over lines a = 1, 2, 3 

(5.32) 

         {0}1 0
, , 1 exp , ,cc

P i j k s p s P p j k dpv


    

(4) Cumulative probability 

over all lines 
    

3

{ } {1}

1

, , 1 1 , ,c D c

a

P i j k P s i j k


       (5.73) 

Steps (5–8) are the same as steps (3–6) for integration, using Pc{D} in place of Pd{D}. 
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Integration is carried out over all m beams, as for other target models. How-

ever, the number of independent target samples used in step (2) is the number for 

a single line in the scan, as given by (5.34) and plotted in Figure 5.7. (The samples 

are actually those in the central column of beams, m = 2, 5, 8, but the symmetry is 

such that beams m = 4, 5, and 6 have the same correlation properties.) The steps in 

integration are then equivalent to those of the 1-D scan on a Case 2 target. 

Calculations for cumulative detection start in step (1) with the steady-target 

detection probability for each individual beam. A cumulative probability for the 

steady target in each scan line is given by step (2), and in step (3) this is integrated 

over the exponential distribution to obtain the single-line cumulative probability 

of the fluctuating target. This in turn is used in step (4) to find the cumulative 

probability over the three lines, whose signals are uncorrelated.  

As with the other target models, the signals can be processed in any of the 

three ways: integration over the scan, cumulative detection over the scan, or inte-

gration over each line (mixed processing). 

5.4.5.1 Diversity Target with Integration  

The beamshape loss for the diversity target with integration is shown in Figure 

5.23. The losses for this target are almost indistinguishable from those of Case 2, 

which in turn is barely distinguishable from Case 1 when integration is used over 

the entire scan.  

5.4.5.2 Diversity Target with Cumulative Detection  

The diversity target loss with cumulative detection over the entire scan is shown 

in Figure 5.24. The optimum spacing for P = 0.9 is   0.9, where Lp2 = 5.3 dB, 

and the optimum shifts upward with decreasing Pd to   1.15 for Pd = 0.3.  
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Figure 5.23  Beamshape loss Lp2 versus sample spacing k for diversity target with integration.  
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5.4.5.3 Diversity Target with Mixed Processing 

The diversity target loss with mixed processing is shown in Figure 5.25. The loss 

is very similar to that of the Case 2 target. The optimum spacing for Pd = 0.9 is 

 = 0.85, where the loss is 4.7 dB. Spacings  > 1.3 introduce losses that are not 

tolerable for applications requiring high Pd. 

5.4.6 Beamshape Loss in the Search Radar Equation for 2-D Raster Scan 

As discussed in Section 5.3.5 for the 1-D scan, a net beamshape loss must be 

adopted for use in the search radar equation: 
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Figure 5.24  Beamshape loss Lp2 versus sample spacing k for diversity target with cumulative  

 detection.  
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Figure 5.25  Beamshape loss Lp2 versus sample spacing k for diversity target with mixed processing. 



172 Radar Equations for Modern Radar 

 

  
 2

2 2

,
,

p

pn

k

L k u
L k u 


 (5.74) 

This loss includes the effect of reapportioning the energy transmitted during the 

search frame time into the larger or smaller number of beams required as the spac-

ing is varied. The net effect of reapportionment of energy and beamshape loss is 

shown in Figures 5.26 and 5.27 for Case 1 and Case 2 targets with cumulative 

detection. The data suggest that the optimum beam spacing is  > 1 for both tar-

gets with cumulative detection. It can be seen that relatively sparse sampling is 

advantageous, especially for Case 2, even when high Pd is required.  

Integration of signals gathered over a 2-D scan that covers a large sector may 

not be easily implemented (e.g., on high-velocity targets that may move through 

the range resolution cell during the scan period). More practical is mixed pro-

Pd
 = 0.7

Pd = 0.5

Pd = 0.3

2L’p0

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
0

2

4

6

8

10

12

Beam spacing in beamwidths

B
e

a
m

s
h

a
p

e
lo

s
s

in
d

B

.

P d
 =

 0.9

 

Figure 5.26  Net beamshape loss Lpn2 versus sample spacing k for Case 1 with cumulative detection.  
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Figure 5.27  Net beamshape loss Lpn2 versus sample spacing k for Case 2 with cumulative detection.  
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cessing: integration over contiguous beams on each line in the raster, with succes-

sive lines combined by cumulative detection over the scan. The net beamshape 

loss for this case is shown in Figures 5.28 and 5.29 for Case 1 and Case 2 targets.  

Not considered in these comparisons of net beamshape loss is the advantage 

of greater accuracy in angle estimation for scans with dense sampling. When 

track-while-scan techniques are used to form track files with the detection data 

from overlapping beams, the improved accuracy may justify the extra energy re-

quired. However, when designing a search scan to minimize both power and time, 

it appears that spacings of one beamwidth or more are advantageous. In systems 

that can assign validation and track initiation beams immediately after the first 

detection, the range at which track initiation occurs with probability Ptrack can be 

extended to the range that gives a cumulative probability of detection equal to 
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Figure 5.28  Net beamshape loss Lpn2 versus sample spacing k for Case 1 with mixed processing.  
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Figure 5.29  Net beamshape loss Lpn2 versus sample spacing k for Case 2 with mixed processing.  
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Ptrack over several scans. A further advantage of using several scans with the re-

duced scan time of sparse sampling is that fluctuating targets will normally be-

come decorrelated from scan to scan, reducing the fluctuation loss. 

5.5 SPARSE SAMPLING USING A TRIANGULAR GRID 

The geometry for the triangular grid is similar to that for the rectangular grid, Sec-

tion 5.4, but the beams in successive scan lines are offset from each other in the x 

coordinate by 0.5, and the y coordinate spacing is reduced from  to 0.75  to 

form the equilateral triangles shown in Figure 5.30. The target locations occupy 

one quadrant of the central beam, but the vertical spacing has been changed by a 

factor 0.75  relative to those in the rectangular raster. The results is a more uni-

form distribution of energy within the scan sector, and reduced beamshape loss. 

The method of calculation follows that for the rectangular grid, but with the fol-

lowing changes. 

5.5.1 Method of Calculation for Triangular Grid 

The steps for each type of processing remain as for the rectangular grid (Tables 

5.2–5.8), but with 20.75 k  replacing 2

k  in the reference detectability factors, 
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Figure 5.30  Beam grids and target sample positions for triangular scan grid. 
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and a loss denoted by LpT2 rather than Lp2. The upper limits for m and j are 9 and 

25, respectively. The beam spacing  varies from 0.5 to 1.5 beamwidths, as for 

the rectangular grid, but now applies to the length of each side of the equilateral 

triangle shown in Figure 5.35. 

5.5.2 Steady-Target Beamshape Loss for Triangular Grid 

Results for this target model are not presented here, as it is seldom applicable to 

actual radar. Analytic approximations to the loss are presented in Appendix 5A. 

5.5.3 Case 1 Beamshape Loss for Triangular Grid 

5.5.3.1 Case 1 with Integration 

The beamshape loss for Case 1 with integration is shown in Figure 5.31. The loss 

for high Pd is substantially less than that shown in Figure 5.15 for the rectangular 

grid. The additional power required for the closer spacing of adjacent rows is 

1 0.75  or 0.63 dB, and the reduction in loss for Pd = 0.9 is 2 dB at  = 1.2. The 

apparent slight rise for   0.5 results from failure to include contributions from 

beyond the nine-beam grid shown in Figure 5.30, whose inclusion is assumed in 

calculation of the reference detectability factor. Extension of integration over 

those beams might or might not actually occur in a practical processing system. 

5.5.3.2 Case 1 with Cumulative Detection 

The loss for Case 1 with cumulative detection is shown in Figure 5.32. Again, the 

loss for high Pd and  > 1.1 is substantially lower than for the rectangular grid.  
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Figure 5.31  Beamshape loss LpT2 versus sample spacing k for Case 1 with integration over the entire 
scan.  
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5.5.3.3 Case 1 with Mixed Processing 

The Case 1 loss with mixed processing, shown in Figure 5.33, exhibits the same 

reduction for  > 1.1 compared with the rectangular grid, with small increases as 

  0.5. 

5.5.4 Case 2 Beamshape Loss for Triangular Grid 

The number of independent samples for Case 2 is slightly increased by the closer 

spacing of rows in the scan, compared with the rectangular grid, resulting in a 

slight decrease in the reference detectability factor, and shown in Figures 5.34 and 

5.35. 
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Figure 5.32  Beamshape loss LpT2 versus sample spacing k for Case 1 with cumulative detection.  
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Figure 5.33  Beamshape loss LpT2 versus sample spacing k for Case 1 with mixed processing.  
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5.5.4.1 Case 2 with Integration 

The Case 2 beamshape loss with integration is shown in Figure 5.36. The loss is 

slightly higher than that for Case 1, because the samples do not include quite as 

many independent target samples as used in calculating the reference detectability 

factor.  
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Figure 5.34  Number of independent target samples as a function of beam spacing, for triangular 

grid.  
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Figure 5.35  Reference detectability factors Dr{0,1,2,D}(Pd) for triangular grid with k = 1. 
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5.5.4.2 Case 2 with Cumulative Detection  

The Case 2 loss with cumulative detection is shown in Figure 5.37. The loss is 

lower than with the rectangular grid for all Pd when  > 1.  

5.5.4.3 Case 2 with Mixed Processing 

The Case 2 loss for mixed processing, shown in Figure 5.38, has also been re-

duced relative to that for the rectangular grid for  > 1. 

5.5.5 Diversity Target Beamshape Loss for Triangular Grid 

The beamshape loss for the diversity target is shown in Figures 5.39–5.41 for the 

three processing methods. In each case, the loss is similar to that for the Case 1 

target, as shown in Figures 5.36–5.39. 
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Figure 5.36  Beamshape loss LpT2 versus sample spacing k for Case 2 with integration.  
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Figure 5.37  Beamshape loss LpT2 versus sample spacing k for Case 2 with cumulative detection.  
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Figure 5.38  Beamshape loss LpT2 versus sample spacing k for Case 2 with mixed processing.  
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Figure 5.39  Beamshape loss LpT2 versus sample spacing k for diversity target with integration.  
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Figure 5.40  Beamshape loss LpT2 versus sample spacing k for diversity target with cumulative  

 detection.  
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5.5.6 Beamshape Loss in Search Radar Equation for Triangular Grid  

For use in the search radar equation, the net beamshape loss is calculated on the 

basis of maintaining constant energy over the scan as beam spacing changes. This 

loss is shown in Figures 5.42–5.44 for the diversity target with three methods of 

processing. The results for this target model are approximately equal to those for 

Cases 1 and 2, and provide a basis for estimating the effects of different spacing of 

samples. 

The major conclusion from Figures 5.42–5.44 is that the net beamshape loss 

to be included in the search radar equation for a 2-D scan with a triangular grid 

must significantly exceed the value Lp2 = 1.77 = 2.48 dB commonly used for 

dense sampling. Given the usual spacing of 0.71 beamwidth, the loss will vary 

from 7.5 dB for mixed processing to 8.5 dB for cumulative detection. Achieving 

the minimum loss of 2–4 dB requires that the spacing be increased to  1.3 beam-
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Figure 5.41  Beamshape loss LpT2 versus sample spacing k for diversity target with mixed processing. 
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Figure 5.42  Net beamshape loss LpTn2 versus sample spacing k for diversity target with integration. 
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width. Such large spacing would result in reduced accuracy of angle estimation, 

but would significantly decrease the time required to scan a given search volume. 

This might be an advantage, especially in the case of multifunction radars that 

follow up on an initial detection with an immediate track acquisition process. 

5.6 SUMMARY OF BEAMSHAPE LOSS 

5.6.1 Beamshape Loss for Dense Sampling 

Sample spacing  < 0.71 beamwidth in the scanned coordinate constitutes dense 

sampling. The loss for dense sampling in one coordinate is Lp0 = 1.33 = 1.24 dB 

for any target type and processing using integration or cumulative detection. For 

2-D scanning it is Lp2 = L
2
p0 = 1.77 = 2.48 dB. Separate integration loss (see Sec-
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Figure 5.43  Net beamshape loss LpTn2 versus sample spacing k for diversity target with cumulative 

detection. 
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Figure 5.44  Net beamshape loss LpTn2 versus sample spacing k for diversity target with mixed  

 processing. 
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tion 4.4.3), and integrator weighting loss or cumulative detection loss (Section 

10.2.5) is included in the usual forms of the radar equation. 

5.6.2 Beamshape Loss for Sparse Sampling 

Sample spacing  > 0.71 beamwidth in the scanned coordinate constitutes sparse 

sampling. The loss for sparse sampling is a function of spacing , detection prob-

ability Pd, target type, and processing method.  

5.6.2.1 One-Dimensional Scanning 

Figures 5.45 and 5.46 illustrate the variation in 1-D beamshape loss between 

steady and Case 1 fluctuating targets for integration and cumulative detection. For 

sparse sampling the loss is seen to be much more dependent on Pd for the steady 

target than for Case 1.  
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Figure 5.45  Beamshape loss Lp1 versus sample spacing k for 1-D scan with integration for steady 
target (solid lines) and Case 1 (dotted lines). 
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Figure 5.46  Beamshape loss Lp1 versus sample spacing k for 1-D scan with cumulative detection for 

steady target (solid lines) and Case 1 (dotted lines).  
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5.6.2.2 Two-Dimensional Scan with Rectangular Grid 

The beamshape loss for 2-D scan with a rectangular grid is shown in Figures 5.47 

and 5.48 for integration and cumulative detection. In both cases the loss is approx-

imately the square (twice the decibel value) of the corresponding 1-D loss at high 

Pd. For the steady target at Pd = 0.5, the 2-D loss exceeds that relationship. 

5.6.2.3 Two-Dimensional Scanning with Triangular Grid 

Location of beams on an equilateral triangular grid, with scan lines offset by half 

the spacing in the rapid-scan coordinate and spaced by 0.75  beamwidth in the 

other coordinate, substantially reduces beamshape loss. The energy required to 
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Figure 5.47  Beamshape loss Lp2 versus sample spacing k for 2-D scan with integration for steady 
target (solid lines) and Case 1 (dotted lines). 
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Figure 5.48  Beamshape loss Lp1 versus sample spacing k for 2-D scan with cumulative detection for 

steady target (solid lines) and Case 1 (dotted lines).  
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obtain a given beam-axis snr is increased by only 0.6 dB for this scan. The loss for 

sparse sampling increases much more slowly than with the rectangular grid, espe-

cially for high Pd, as shown in Figures 5.49 and 5.50. In these plots, the reference 

detectability factor has been adjusted to account for the additional energy re-

quired, so the loss for integration remains 2Lp0 = 2.48 dB in the transition to dense 

sampling. The difference between the two grids is more extreme for the steady 

target than for Case 1 as shown in these figures. 

5.6.3 Processing Methods 

Three processing methods have been considered in calculating beamshape loss: 

integration of samples from each beam dwell, combination of detection probabili-

ties from each dwell into a cumulative probability of detection, and (for 2-D scan) 
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Figure 5.49  Beamshape loss Lp2 versus sample spacing k for 2-D scan with integration for Case 1 

with triangular grid (solid lines) and rectangular grid (dotted lines). 
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Figure 5.50  Beamshape loss Lp2 versus sample spacing k for 2-D scan with cumulative detection for 
Case 1 with triangular grid (solid lines) and rectangular grid (dotted lines). 
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a mixed process in which detection is performed on signals integrated over each 

scan line, with results combined in a cumulative probability of detection over suc-

cessive lines. 

The use of integration (either coherent or noncoherent) is obviously the most 

efficient of the three methods, but it may not be possible on 2-D scans that cover 

large sectors. When each line of the scan requires a time longer than the correla-

tion time of the target (see Section 4.5.2), coherent integration cannot be per-

formed beyond a single line. When the scan time for a line exceeds the time in 

which the target stays within a range or Doppler resolution cell, even noncoherent 

integration becomes difficult. It is possible to perform integration over a string of 

cells that follow the target dynamics (so-called retrospective, or “track-before-

detect” processing), but this requires much higher processing power than conven-

tional integration within each cell. Hence, the mixed processing option may be 

substituted. 

Mixed processing performs integration over each line, but combines results of 

successive lines through the process of cumulative detection. Since there are not 

normally more than two or three scan lines in which the target appears, the loss 

from the cumulative process is moderate (see Section 10.2.5). The plots of 

beamshape loss using this procedure include the cumulative detection loss. For 

spacing  = 0.5 beamwidth, there are basically four beams with significant target 

energy (two per line, over two lines). Integration within the line provides a gain 

approaching 3 dB, and the cumulative process gains an additional 1–1.5 dB, leav-

ing 1.5–2 dB of cumulative loss relative to ideal integration. Thus, the plotted 

results show a total beamshape loss of 4–4.5 dB at  = 0.5, of which the basic 

dense sampling loss 2Lp0 = 2.5 dB. 

The least efficient process is to make a detection decision within each dwell, 

with no dwell-to-dwell memory but an increase in cumulative detection probabil-

ity over all dwells that contain target signals. The curves typically show a total 

beamshape loss of 6 dB at  = 0.5, of which the basic dense-sampling loss 

2Lp0 = 2.5 dB, the other 3.5 dB being attributable to the cumulative process.  

Not all scan patterns use regular rasters such as the rectangular or triangular 

grid. Acquisition scans for a tracking radar may use arbitrary clusters of beams 

centered on the designated target position. In general, the beamshape loss for such 

scans can be estimated using the data obtained for triangular 2-D scan grids (e.g., 

Figures 5.31–5.44) with the spacing and the processing method by which the sig-

nals are combined in the acquisition scan. 

5.6.4 Net Beamshape Loss for the Search Radar Equation 

In the loss budget for the search radar equation, the net beamshape loss Lpn1 (Sec-

tion 5.3.5) or Lpn2 (Sections 5.4.6, 5.5.6) replaces the product of Lp0 or Lp2 and the 
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cumulative detection loss. The result is to multiply the loss values plotted in this 

summary by a factor 1/ (for 1-D scan), 1/
2
 (for 2-D scan with rectangular grid), 

or 21 0.75  (for 2-D scan with triangular grid). The result is to increase the 

contribution of net beamshape loss for the normally used sample spacings  < 1. 

For example, at  = 0.71, the loss for 1-D scan is not Lp0 = 1.24 dB but rather 

Lpn = 3–4 dB, depending on the target model and processing (see Figures 5.10–

5.13). For 2-D scan these values increase to L
2
pn = 6–12 dB (see Figures 5.26–5.29 

and 5.42–5.44), well above L
2
p0 = 2.48 dB (or the 3.2 dB derived from Blake’s 

work). Part of the net beamshape loss is explained by inclusion of the cumulative 

detection.  

The minimum net beamshape loss appears in all cases at   1, even for 

Pd  0.9, suggesting that sparse sampling provides a more efficient search mode 

than the conventional   0.71. As noted earlier, however, this efficiency may 

compromise the angular accuracy of the target data. 

5.6.5 Beamshape Loss for Unequally Spaced 2-D Scan 

All the 2-D beamshape loss data presented above are based on the assumption that 

sample spacings, in beamwidths, were either equal in the two coordinates or were 

on equilateral triangles. Where this condition is not met, an approximation of the 

loss can be made in either of two ways. For a rectangular grid, the loss is approx-

imately the product (sum, in decibels) of the 1-D loss values for the two spacings. 

Alternatively, and for the triangular grid, the loss may be estimated by averaging 

the decibel values of the 2-D losses calculated for the two spacings.  

If more accurate data are needed, the procedures described in Sections 5.4.1, 

5.4.2, and 5.5.1 may be modified to include the two spacings. 
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Appendix 5A Analytical Approximations for Beamshape Loss 

While the calculation procedures presented in Sections 5.3.1–5.3.7 yield accurate 

estimates of beamshape loss, they can be time-consuming and impractical for in-

clusion in radar analysis programs. The following approximations were derived to 

match the calculated beamshape loss with a beam from a cosine-illuminated rec-

tangular aperture. That pattern was used rather than the Gaussian beam because it 

better captures the increased loss from sparse sampling that results from the steep 

slope as the target approaches the first null on each side of the mainlobe. The ap-

proximations give Lp to within 0.1–0.2 dB for each case discussed in the previous 

sections, merging with the dense-sampling value as the spacing   0.71. Primed 

symbols denote values in decibels, and the dense-sampling value for 1-D scan is 

denoted by Lp0. 

5A.1 1-D Beamshape Loss 

The following expressions apply for  > 0.71; 1 0p pL L   = 1.24 dB for   0.71.  

5A.1.1 Approximation for Steady Target with Integration 

         
1.7 2.25 1.3 1.8

1 0, 23 0.3 0.71 2.1 0.9 0.71p d p d dL P L P P          (5.75) 

5A.1.2 Approximation for Steady Target with Cumulative Detection 

In the subsequent equations, the term C(Pd,) represents the difference between 

the spacing  and the spacing at which minimum loss occurs for given Pd. The 

loss follows different functions, defined by A(Pd,), for positive and negative val-

ues of this term. 
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 (5.76) 
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5A.1.3 Approximation for Case 1 Target with Integration 
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2.5 1.5 30.6

1 0, 5.6 0.71 3.7 0.9 0.71p d p d dL P L P P         (5.77) 

5A.1.4 Approximation for Case 1 Target with Cumulative Detection 
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 (5.78) 

5A.1.5 Approximation for Case 2 Target with Integration 

        
2.4 2.5 3.8
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5A.1.6 Approximation for Case 2 Target with Cumulative Detection 
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 (5.80) 

The net beamshape loss for use in the search radar equation, for all cases 

listed above, is Lpn1(Pd,) = Lp1(Pd,)  10 log(). 

5A.2 2-D Beamshape Loss with Rectangular Grid 

The 2-D beamshape loss in dB is denoted by Lp2. All expressions apply for  > 

0.71; 2 02pL L   = 2.48 for   0.71.  

5A.2.1 Approximation for Steady Target with Integration 
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5A.2.2 Approximation for Steady Target with Cumulative Detection 
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 (5.82) 

5A.2.3 Approximation for Steady Target with Mixed Processing 
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17.5 , ,  if , 0

, 0.79 0.3 1.3

p d p d d

d

d d d

d

d d

d d

L P L P A P

C P
A P P C P

C P

C P C P

C P P

       

 
     

  

     

     

 (5.83) 

5A.2.4 Approximation for Case 1 with Integration 

        
2.6 0.8 30.75

2 0, 2 13.5 0.71 5 0.9 0.71p d p d dL P L P P         (5.84) 

5A.2.5 Approximation for Case 1 with Cumulative Detection 

 

     

   
 

 
 

   

   

0.52

2 0

2

1.4

21.35

0.26

, 2 1.08 1.02 0.3 ,

,
, 1.5 1.9 ,  if , 0;

,0.5

              17.8 , ,  if , 0

,  0.23 0.3 1.1

p d p d d

d

d d d

d

d d d

d d

L P L P A P

C P
A P P C P

C P

P C P C P

C P P

       

 
     

  

     

     

 (5.85) 
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5A.2.6 Approximation for Case 1 with Mixed Processing 

 

     

   
 

 
 

   

   

0.54

2 0

2

0.7

2.2

0.63

, 2 0.71 0.45 0.3 ,

,
, 0.95 1.9 ,  if , 0;

,0.5

              15 , ,  if , 0;

,  0.28 0.3 1

p d p d d

d

d d d

d

d d d

d d

L P L P A P

C P
A P P C P

C P

P C P C P

C P P

       

 
     

  

     

     

 (5.86) 

5A.2.7 Approximation for Case 2 with Integration 

    
2.31.55

2 0, 2 15 0.71  p d p dL P L P      (5.87) 

5A.2.8 Approximation for Case 2 with Cumulative Detection 

 

     

   
 

 
 

   

   

0.87

2 0

2

1.4

21.35

0.26

, 2 1.15 3.28 0.3 ,

,
, 0.95 1.9 ,  if , 0;

,0.5

              16.5 , ,  if , 0;

,  0.23 0.3 1.05

p d p d d

d

d d d

d

d d d

d d

L P L P A P

C P
A P P C P

C P

P C P C P

C P P

       

 
     

  

     

     

 (5.88) 

5A.2.9 Approximation for Case 2 with Mixed Processing 

 

   

   
 

 
 

   

   

0.86

2 0

2

1.4

2.4
1.25

0.37

2 0.67 1.68 0.3 ,

,
, 0.6 1.9 , if , 0

,0.5

22 , ,  if , 0

, 0.18 0.3 0.95

p p d d

d

d d d

d

d d d

d d

L L P A P

C P
A P P C P

C P

P C P C P

C P P

      

 
     

  

     

     

 (5.89) 
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5A.2.10 Approximation for Diversity Target with Integration 

        
2.3 2 31.2

2 0, 2 13.5 0.71 2.3 0.9 0.71p d p d dL P L P P         (5.90) 

5A.2.11 Approximation for Diversity Target with Cumulative Detection 

 

   

   
 

 
 

   

   

0.83

2 0

2

1.1

1.4
1.4

0.37

2 1.1 2.53 0.3 ,

,
, 1.2 2.1 , if , 0

,0.5

17.5 , ,  if , 0

, 0.18 0.3 1.1

p p d d

d

d d d

d

d d d

d d

L L P A P

C P
A P P C P

C P

P C P C P

C P P

      

 
     

  

     

     

 (5.91) 

5A.2.12 Approximation for Diversity Target with Mixed Processing 

 

   

   
 

 
 

   

   

0.93

2 0

2

0.5

1.3
1.3

0.17

2 0.77 1.94 0.3 ,

,
, 0.8 1.25 , if , 0

,0.5

17 , ,  if , 0

, 0.13 0.3 1

p p d d

d

d d d

d

d d d

d d

L L P A P

C P
A P P C P

C P

P C P C P

C P P

      

 
     

  

     

     

 (5.92) 

The net beamshape loss for use in the search radar equation, for all cases 

listed above, is Lpn2(Pd,) = Lp2(Pd,)  20 log(). 

5A.3 2-D Beamshape Loss with Triangular Grid 

The beamshape loss in dB for the triangular grid is denoted by LpT2. The following 

expressions apply for  > 0.71; 2 02pTL L   = 2.48 for   0.71. 

5A.3.1 Approximation for Steady Target with Integration 

        
2.4 3.7 21.75

2 0, 2 12 0.71 9.5 0.9 0.71pT d p d dL P L P P         (5.93) 
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5A.3.2 Approximation for Steady Target with Cumulative Detection 

 

     

   
 

 
 

   

   

0.58

2 0

2

1.85

1.80.9

0.63

, 2 3.18 0.3 ,

,
, 1.6 2 , i f , 1,  

,0.5

= 11 , ,  if , 1

, 0.69 0.3 1.4

pT d p d d

d

d d d

d

d d d

d d

L P L P A P

C P
A P P C P

C P

P C P C P

C P P

      

 
     

  

    

     

 (5.94) 

5A.3.3 Approximation for Steady Target with Mixed Processing 

 

     

   
 

 
 

   

   

0.43

2 0

2

2.3

1.81.2

0.33

, 2 0.14 1.86 0.3 ,

,
, 0.7 2 , if , 0

,0.5

10.5 , ,  if , 0

, 0.77 0.3 1.5

pT d p d d

d

d d d

d

d d d

d d

L P L P A P

C P
A P P C P

C P

P C P C P

C P P

       

 
     

  

      

     

 (5.95) 

5A.3.4 Approximation for Case 1 with Integration 

        
2.7 3 40.5

2 0, 2 7 0.71 8.5 0.9 0.71pT d p d dL P L P P         (5.96) 

5A.3.5 Approximation for Case 1 with Cumulative Detection 

 

     

   
 

 
 

   

   

0.51

2 0

2

0.3

2

0.26

, 2 1.03 0.79 0.3 ,

,
, 2.9 1.7 ,   if , 0;

,0.5

              13 , ,   if , 0

,  0.23 0.3 1.2

pT d p d d

d

d d d

d

d d d

d d

L P L P A P

C P
A P P C P

C P

P C P C P

C P P

       

 
     

  

     

     

 (5.97) 

5A.3.6 Approximation for Case 1 with Mixed Processing 
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     

   
 

 
 

   

   

0.55

2 0

2

0.3

20.7

0.26

, 2 0.8 0.38 0.3 ,

,
, 1.4 1.9 ,   if , 0;

,0.5

              11 , ,   if , 0

,  0.23 0.3 1.15

pT d p d d

d

d d d

d

d d d

d d

L P L P A P

C P
A P P C P

C P

P C P C P

C P P

       

 
     

  

     

     

 (5.98) 

5A.3.7 Approximation for Case 2 with Integration 

        
2.5 4 2.50.9

2 0, 2 8 0.71 6 0.9 0.71  pT d p d dL P L P P         (5.99) 

5A.3.8 Approximation for Case 2 with Cumulative Detection 

 

     

   
 

 
 

     

   

0.91

2 0

2

0.2

2.20.4

0.37

, 2 1.13 3.2 0.3 ,

,
, 5 1.6 ,   if , 0;

,0.5

              13.5 0.2 , ,   if , 0

,  0.18 0.3 1.15

pT d p d d

d

d d d

d

d d d

d d

L P L P A P

C P
A P P C P

C P

P C P C P

C P P

       

 
     

  

      

     

 (5.100) 

5A.3.9 Approximation for Case 2 with Mixed Processing 

 

     

     

   

   

20.87

2 0

0.22

0.5

0.37

2 0.75 1.66 0.3 , ,

, 3.7 1.6 , if , 0

12.5 0.2 ,  if , 0

, 0.18 0.3 1.1

pT p d d d

d d d

d d

d d

L L P A P C P

A P P C P

P C P

C P P

          

    

   

     

 (5.101) 

5A.3.10 Approximation for Diversity Target with Integration 

      
2.7 50.7

2 0, 2 0.71 7.5 12 0.9  pT d p d dL P L P P       
 

 (5.102) 
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5A.3.11 Approximation for Diversity Target with Cumulative Detection 

 

   

   
 

 
 

     

   

0.56

2 0

2

0.35

20.7

0.37

2 1.09 1.24 0.3 ,

,
, 2.1 2 , if , 0

,0.5

13.5 0.15 , ,  if , 0

, 0.18 0.3 1.15

pT p d d

d

d d d

d

d d d

d d

L L P A P

C P
A P P C P

C P

P C P C P

C P P

      

 
     

  

      

     

 (5.103) 

5A.3.12 Approximation for Diversity Target with Mixed Processing 

 

   

   
 

 
 

     

 

0.66

2 0

2

0.4

2.20.7

2 0.82 0.94 0.3 ,

,
, 0.75 2 , if , 0 ;

,0.5

14.5 0.2 , ,  if , 0

, 0.9

pT p d d

d

d d d

d

d d d

d

L L P A P

C P
A P P C P

C P

P C P C P

C P

      

 
     

  

      

   

 (5.104) 

The net beamshape loss for use in the search radar equation, for all cases 

listed above, is LpTn2(Pd,) = LpT2(Pd,)  20 log(). 
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CHAPTER 6 

System Noise Temperature 

6.1 NOISE IN THE RADAR BANDS 

A significant contribution made by Blake [1–3] is his treatment of noise in radar 

receiving systems. The reader is referred to the referenced publications for a thor-

ough discussion. Two major points on the subject are: 

Thermal and quasi-thermal noise cannot be eliminated or filtered out by any special circuitry 

or devices, while many manmade noises can be. Although the signal-to-thermal-noise ratio 
can be maximized by good receiver design and optimum signal processing, the residual ther-

mal noise still imposes a fundamental limit on how small a signal can be detected.  

A basic cause of the voltage fluctuation known as electrical noise is thermal agitation of elec-
trons in imperfect conductors. The phenomenon of temperature, according to the science of 

thermodynamics, is the result of the kinetic energy (motion) of particles of mattersolid, liq-

uid, or gaseous. [3, pp. 131–132] 

6.1.1 Noise Spectral Density 

Radio noise originates in a conductor of resistance R ohms at thermodynamic 

temperature T, which generates thermal noise with uniform power spectral density 

N0 over a broad RF band. Exact quantum mechanical analysis gives a noise power 

density that is a function of frequency and temperature:  

 
 

0

0

0exp 1

hf
N kT

hf kT
 


 (6.1) 

where 

h = 6.63 10
34

 W·s
2
 is Planck’s constant;  

f0 = frequency in Hz; 

k = 1.38 10
23

 W·s is Boltzmann’s constant. 



198 Radar Equations for Modern Radar 

 

The frequency-independent (white-noise) approximation in (6.1) is obtained by 

expanding the exponential, assuming that hf0/kT << 1, and retaining only the first 

two terms of the expansion: 

  0 0exp 1hf kT hf kT   (6.2) 

The error in approximation is 0.1 dB for f0/T = 10
9
, corresponding to X-band (10 

GHz) at 10K temperature, and for W-band (100 GHz) at 100K. It increases to 

1.1 dB for f0/T = 10
10

, corresponding to W-band at 10K. Hence the approxima-

tion is adequate for almost all radar calculations, and will be used here. The full 

expression (6.1) is needed in the terahertz, infrared, and optical bands. 

The noise spectral density N0 used in the radar equation is referred to the out-

put port of the receiving antenna, where the system noise temperature Ts is defined 

for entry into (6.1). The receiver that accepts signals from the antenna is charac-

terized by its frequency response H( f ) and noise bandwidth Bn, defined as  

 

 
 

2

2

0

1
nB H f df

H f





   (6.3) 

where f0 is the center frequency of the response. 

Given the noise bandwidth Bn and a power gain G measured to a specific 

point in the receiver chain, the noise power at that point is  

 s nN kT B G  (6.4) 

The noise voltage across a resistance at that point is then 

 n s nE N R kT B G R   (6.5) 

It is customary in analysis of radar performance, as opposed to circuit design, to 

simplify discussions by setting R = 1, thereby expressing power simply as the 

square of voltage. 

6.1.2 Noise Statistics 

The probability density function (pdf) of thermal noise voltage is Gaussian [3, p. 

135, Eq. (4.8)]: 
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  
2

2

1
exp

22

n

n

E
p E

 
  

  
 (6.6) 

where  is the rms value of the noise voltage.
1
 The average voltage is zero. Blake 

states [3, p. 135] that “quasi-thermal noise” introduced by some radio circuits is 

“virtually indistinguishable from thermal noise within the passband of a radar re-

ceiver,” and can be modeled as thermal noise. Ultrawideband (UWB) radar may 

require use of different spectral and statistical treatment of noise. 

Video noise (envelope detected Gaussian noise) has a Rayleigh distribution: 

 
 

2

2 2
exp  , 0

2

0 ,                         0

v v
p v v

v

 
   
  

 

 (6.7) 

where  is the standard deviation of the IF noise applied to the envelope detector. 

Video noise has a DC component: 

  
0

2v vp v dv



     (6.8) 

The DC component is removed in signal processing, leaving the noise (AC) com-

ponent of video noise: 

    

1 2

2

video

0

2 2 0.6551v v p v dv

 
        
 
 
  (6.9) 

These values are used in the calculation of threshold settings for detection (Chap-

ter 4). 

                                                           
1  In [3, Eq. (4.8)], a typographical error in the D. C. heath edition, corrected in the subsequent Artech 

edition, places 22 instead of 22 in the denominator of the exponential. In the subsequent integra-

tion for the rms value of En the lower limit of integration is given as 0 rather than the correct value 

, in both editions. The lower limit is correctly zero in integrations for video noise. 
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6.2 SOURCES OF NOISE IN RADAR RECEPTION 

Sources of noise in a radar receiving system are shown in Figure 6.1. The first 

radar element through which the received signal passes is the antenna. Its pattern 

has lobes that are directed partly toward the sky and partly toward the surface. 

Noise sources in the sky include molecules of the tropospheric gases, ions at alti-

tudes above the troposphere, cosmic sources, and sometimes solar radiation. The 

physical temperature of the troposphere is coupled to an RF noise temperature by 

the one-way attenuation L1 applicable to passage of a ray from space through the 

troposphere, contributing the sky noise Ta. Antenna pattern lobes reaching the 

Earth’s surface accept noise from molecular agitation of the surface material that 

is at a physical temperature Tg, along with sky noise reflected from the surface. 

Within the antenna are resistive elements whose loss La contributes to the antenna 

noise temperature Ta, which is measured at the antenna output terminal. This is the 

reference point to which system noise temperature Ts is referred. 

Each subsequent hardware element through which the received signal passes 

contains additional sources of noise. These are referred to the antenna terminal, 

and are grouped into two terms: Tr, the contribution of RF elements that introduce 

a loss Lr between the antenna terminal and the receiver input, and LrTe, the contri-

bution of the receiver (and possibly subsequent circuits), increased by the loss Lr 

to refer Te to the antenna terminal. The system noise temperature is given by 

 
s a r r eT T T L T    (6.10) 

This expression is used, for example, in the Blake chart, Figure 1.1, and in the 

modified chart of Figure 1.2. The remainder of this chapter discusses the calcula-

tion of the terms in (6.10) for different environments and radar types. 

The noise temperature contributed in passing through a circuit element or 

path with loss L can be referred to the input of that element as 

  in 1pT T L   (6.11) 
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Figure 6.1  Sources of receiving system noise. 
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where Tp is the physical temperature of the lossy material. Thus, the temperature 

at the output of the element is 

 in

out

1
1p

T
T T

L L

 
   

 
 (6.12) 

These relationships are used to calculate noise temperature components at succes-

sive stages in the receiving path. 

6.3 ANTENNA NOISE TEMPERATURE 

The antenna noise temperature Ta is the result of the loss within the antenna itself 

and several noise sources in the environment surrounding the antenna. Early forms 

of the radar equation assumed Ta  300K. Blake’s work was instrumental in refin-

ing that assumption, and providing a method of assigning to Ta an accurate value 

that is often a small fraction of the “standard temperature” T0 = 290K used in de-

fining receiver noise figure. 

6.3.1 Sources of Antenna Noise Temperature 

6.3.1.1 Transmitted Power Coupling to Environment 

The contributions of the antenna and its environment to Ta may be identified by 

looking outward from the antenna port, considering the way in which transmitted 

power applied to that port would be distributed among four dissipative loads, and 

invoking reciprocity to apply that same distribution to the input noise. In Figure 

6.2, a power of 1W enters the antenna from the right and is split into four compo-

nents. An initial power divider routes power 1/La < 1W into radiation from the 

antenna, while the remaining Pa4 = 1  1/La goes the ohmic loss La within the an-

tenna. The radiated power in turn is divided between two angular regions: a frac-

tion as appears in lobes that reach the surface (the lower hemisphere), while 1  as 

is directed to the sky (the upper hemisphere). The power radiated directly toward 

the sky is Pa1 = (1  as) /La, while as /La goes to the surface. When the radar beam 

axis is elevated to an elevation angle b > 0, only the lower sidelobes, and possibly 

the lower skirt of the mainlobe, contribute to as. 

For a surface with the surface reflection coefficient , a fraction 
2
 of the 

power reaching the surface is reflected upwards toward space, while 1  
2
 is ab-

sorbed. The power absorbed in the surface is Pa3 = as(1  
2
)/La. The upward 

component is Pa2 = as
2
/La, and this is added to Pa1 in the sky in front of the an-

tenna. A fraction 1/L1 of Pa1 + Pa2 passes outward through the galaxy to the cos-
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mos, while the fraction 1  1/L1 is absorbed by the one-way tropospheric attenua-

tion L1 (see Chapter 7). Thus the sky component is divided between power dissi-

pated in the troposphere and power passing into space. The ionosphere need not 

be considered, because it has negligible attenuation at frequencies above 300 

MHz. Even at 100 MHz the maximum ionospheric loss of 1 dB makes a negligi-

ble contribution to noise, compared with galactic sources. 

Blake in [3] considers the issue of upward reflections from the surface, in 

terms of a reflectivity R and emissivity E, but provides little guidance as to how 

these terms should be evaluated. Formulation using the reflection coefficient , 

calculated in Section 8.3 for different surfaces, polarizations, and grazing angles, 

provides a practical procedure that is used here. 

6.3.1.2 Environmental Noise Coupling to Antenna Port 

For a system in thermal equilibrium, the principle of reciprocity establishes that 

the thermal noise received from the galaxy, the troposphere, the surface, and the 

antenna loss will be combined at the antenna output port, each noise component 

weighted by the same coefficients that control the transmitted power distribution. 

Figure 6.3 illustrates this receiving process.  

Four sources of noise, entering from the left, are coupled to the antenna out-

put port. These are the troposphere, at physical temperature T ; the cosmos at Tc; 

the surface at TG ; and the antenna loss at Tp. The physical temperatures are the 

temperatures of the molecules contributing the noise, as distinguished from the 

resulting RF noise temperature. The temperature components from the tropo-

sphere and galaxy are added to form sky noise Ta,  which enters directly into the 

antenna lobes of the upper hemisphere with weight 1  as. It is further weighted 

by 1/La to form the first noise temperature component Ta1: 
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1 W
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
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1   
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Figure 6.2  Distribution of transmitted power applied to the antenna. 
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The sky noise also enters lower lobes through surface reflections, with weight 

as
2
, and is further weighted by 1/La form the second component Ta2: 

 
2

2

s

a a

a

a
T T

L


  (6.14) 

The surface temperature Tg, is received in the lower lobes with weight as(1 
2
), 

and is further weighted by 1/La to form the third component Ta3: 

 
 2

3

1s

a G

a

a
T T

L


  (6.15) 

The internal antenna noise, referred to the output port, is the fourth component: 

 4

1
1a p

a

T T
L

 
  

 
 (6.16) 

1/L1

Ta

Surface

as


2

1   
2

1  1/L 1

La

T Ta3 G=

La

Ta2=T’a

Ta1= ’T a
Antenna

+

Troposphere

Cosmos

Sky

1  1/L a

1/La

Tc

TG

Tp

T

(1  1/L a)Ta4=Tp

T’a

T’a

 

Figure 6.3  Combination of antenna thermal noise components. The four output components Ta14 are 
defined as they appear at the output terminal to form Ta 
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The antenna temperature Ta at the output terminal is the sum of these four compo-

nents:
2
 

      

1 2 3 4

21 1

a a a a a

a G a s p a

a

T T T T T

T T T a T L

L

   

     


 (6.17) 

Blake [3, p. 172, Eq. (4.76a)] assumes  = 0, expressing antenna noise as:
3
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 
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 (6.18) 

We discuss next the methods by which the noise temperature inputs are calculat-

ed. 

6.3.2 Sky Noise Temperature  

The sky noise temperature Ta is the sum of tropospheric, cosmic, and solar noise 

temperatures: 

 suna cT T T T
     (6.19) 

6.3.2.1 Tropospheric Noise Temperature T 

Molecules of atmospheric gas and water vapor in a tropospheric volume element 

emit part of their thermal energy as electromagnetic noise with a density given by 

(6.1), in which T represents the noise temperature of the element. An antenna lobe 

at elevation angle   0 from a receiving antenna at altitude hr passes through el-

ements of the troposphere at altitudes h above sea level that increase with range r 

approximately as 

                                                           
2  But note that a recently discovered 5th component will be discussed in Section 6.3.5. 
3  Blake [3, p. 168] uses the symbol TG for the physical temperature of the surface, as we do here. On 

p. 171 he uses that same symbol for the product asTG, and [3, Eq. (4.76)] includes Tg = asTG, which 
becomes 36K in [3, (4.76a)]. 
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 
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e e
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h r h r

k a


      (6.20) 

where  

ae  =  radius of the Earth = 6,378 km; 

ke  =  Earth’s radius factor  4/3, accounting for tropospheric refraction (see 

Section 7.1.4); 

r  =  range in km.  

The variation in physical temperature of the tropospheric gases as a function 

of h can be described using the 1976 U.S. Standard Atmosphere [4, p. 14-3] dis-

cussed in Section 7.1.2 and shown in Figure 6.4.  

The noise temperature over an incremental distance along the path at angle  

is the product of the tropospheric temperature and attenuation over that distance, 

and its contribution to antenna noise temperature is proportional to that product, 

reduced by the attenuation over the earlier portion of the path. This is the basis of 

Blake’s analysis that led to the expression for antenna temperature [3, p. 165, Eq. 

(4.65)]: 
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 (6.21) 
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Figure 6.4  Physical temperature Ttr of the troposphere as a function of altitude [4, p. 14-3]. 
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where k1( f0,h) is the one-way attenuation coefficient in dB/km of the troposphere 

at frequency f0 and altitude h. The constant 0.2303 = 0.1 ln(e) multiplies the outer 

integral to give the noise temperature in kelvins generated in passage of the beam 

through the entire atmosphere into space. The exponential with argument 0.2303 

times the inner integral gives the fraction of this temperature reaching the antenna 

from range r, after attenuation in the intervening troposphere. The effect is to de-

crease the contribution from higher altitudes of the troposphere. 

The one-way attenuation coefficient k1 in dB/km is found from the two-way 

coefficient k, which is: 

  
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  

 (6.22) 

where 

kO  = two-way, sea-level attenuation coefficient of oxygen (see Section 

7.2.1); 

kW  =  two-way, sea-level attenuation coefficient of water vapor (see Sec-

tion 7.2.1);  

P  =  air pressure;  

w  =  density of water vapor.  

Expressions for the atmospheric pressure profile P(h) and water-vapor density 

w(h) are given in Sections 7.1.2 and 7.1.3. 

A computational problem in application of (6.21) results from the need to find 

h(r ,) by the ray-tracing integral, followed by root-finding to solve for r (h,). 

This is then integrated over r , and the entire process repeated for the integration 

over r. A practical procedure that introduces only slight error in the evaluation of 

T uses the effective Earth radius approach to obtain a closed-form expression 

      
2 2, 2 sine e s e e s e eh r k a h r k a h R k a         (6.23) 

By avoiding the ray-tracing and root-finding within each integral, the time re-

quired for the nested integration is greatly reduced. Plots of sky temperature as 

functions of frequency and beam elevation angle, such as Figure 6.7, can then be 

generated for any selected atmospheric model. 

6.3.2.2 Noise Temperature from Weather Attenuation  

The attenuation coefficient k1 in (6.21) applies to an atmospheric model for clear 

air, including water vapor but without allowance for precipitation or clouds along 
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the tropospheric path into space. An accurate estimate of performance of the radar 

in the presence of precipitation requires the appropriate two-way attenuation coef-

ficient kr( f0,h) for rain or ks( f0,h) for snow, determined from data in Sections 

7.3.1 or 7.3.4. The one-way values    1 , 0 , 0, 0.5 , dB/kmr s r sk f h k f h   are then 

added to k1(r,) in (6.21). A known relationship between kr,s and altitude h(r,) 

reduces the precipitation coefficient to zero beyond the weather volume, and per-

mits integration over ranges r  and r. 

6.3.2.3 Cosmic Noise Temperature Tc 

Cosmic noise includes temperature components from the galaxy, the background 

of distant space, and the sun: 

 gal sp suncT T T T    (6.24) 

The galactic component of noise is greatest within  2 of the plane of our galaxy 

(the Milky Way). The noise temperature thus depends on the direction of the an-

tenna lobe with respect to that plane and center of the galaxy. The model for ga-

lactic noise temperature [3, p. 162, Eq. (4.60)] is based on a reference temperature 

T0.1 that is measured at f = 0.1 GHz: 

  
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gal 0 0.1

0
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 (K)T f T
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 
  

 
 (6.25) 

where f0 is in GHz. The reference level varies with direction over the following 

limits: 

T0.1max  = 18,650K at the center of the galaxy; 

T0.1mid = 3,050K elsewhere in the galactic plane; 

T0.1min  = 500K outside the galactic plane. 

The second component of cosmic noise is a constant Tsp = 2.7K, making only a 

small contribution.  

The angles of the beam axis relative to the plane and center of the galaxy are 

unpredictable, so radar analysis is normally carried out using T0.1mid = 3,050K in 

the mainlobe. The maximum value may be substituted for a conservative estimate 

of performance. In any case, the contribution of galactic noise to the final system 

noise temperature for microwave radar is insignificant, amounting to less than 

10K at S-band.  

The solar contribution is calculated using the noise brightness temperature TB 

of the quiet sun’s disc, based on calculations made by Blake, as shown in Figure 
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6.5. The solar disk as observed from the Earth has an angular diameter of 0.5, 

corresponding to a solid angle s = 5.98  10
5

 steradian.  

The contribution to sky noise Ta when observing the sun with antenna gain 

pattern G(A,) is 
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1
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B s

T T A G A d
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
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
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
 (6.26) 

The approximation applies when the sun lies in a far-sidelobe region where the 

gain is uniform at a level Gfar. Even for an antenna with a relatively high far-

sidelobe level (e.g., Gfar = 5 dB), Tsun < 2K at f0  0.1 GHz, and this component is 

negligible. Larger sidelobes or the mainlobe see significant increases for the quiet 

sun, especially in the lower radar bands. During sunspot activity, temperatures up 

to ten times the level of the quiet sun may be observed over periods of several 

hours. Solar noise is thus a problem in limited angular regions and for brief time 

periods, and is usually omitted from radar analysis. 

6.3.2.4 Total Sky Temperature Ta 

The total sky temperature Ta, given by (6.19), is shown in Figure 6.6 as a function 

of frequency, for different beam elevation angles. Elevation beamwidths e > 1 

require use of an average over the elevation angles within the mainlobe, weighted 

by the antenna power gain for each angle. 
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Figure 6.5  Noise brightness temperature of the quiet sun’s disc as function of frequency. 
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6.3.3 Noise Temperature from the Surface  

The surface in which the noise component Ta3 originates is generally assumed to 

be at a physical temperature TG = T0 = 290K. A different local value may be used 

to account for extreme climatic conditions, but variation from 290K is small when 

compared with uncertainty in the fraction as of the antenna pattern that accepts the 

surface noise. In his approximate expression, Blake assigns a value as = 0.124 for 

that fraction, obtaining a surface noise temperature TGas(1  
2
) = 36K.  

Given the more recent developments in low-sidelobe antennas and array sys-

tems, it is appropriate to evaluate the fraction more exactly for the antenna pattern 

of a specific radar. For a power directivity pattern G(A,), defined over the entire 

hemisphere surrounding the antenna and normalized to unity total radiated power 

is 

  
2

2

, cos 1P G A d dA



 

       (6.27) 
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Figure 6.6  Total sky temperature Ta as function of frequency, for different elevation angles . Three 
sets of results for the low radar bands are shown, corresponding to galactic contributions to a 

mainlobe directed at the center of the galaxy, any point within the Milky Way, or outside the ga-

lactic plane. 
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where A is azimuth angle and   is elevation angle. If the beam axis is elevated to 

an angle b, the fraction of the power radiated into the lower hemisphere is 

  
0

2

, coss ba G A d dA



 

      (6.28) 

and the remaining fraction 1  as is in the upper hemisphere, 0 <    /2. 

Figure 6.7 shows the results of applying (6.28) to patterns of a cosine-

illuminated aperture with 2 beamwidth and with uniform far-sidelobe levels 5, 

10, and 15 dBi. The normalization of the curves to the beamwidth makes them 

applicable to most radar antennas. With the axis of a symmetrical beam directed 

horizontally, 50% of the power from an antenna at low altitude reaches the sur-

face. Upward tilt of the beam axis to one beamwidth reduces the fraction of power 

on the surface to the level set by the far sidelobes, which is 13.5%, 5.2%, and 

1.8% for the three sidelobe levels plotted. If the antenna is a front-fed reflector, 

about half the spillover power is added to the surface fraction, which may increase 

as from values calculated here using theoretical patterns for the illumination func-

tion. Ultralow-sidelobe reflector antennas, discussed in [5, pp. 175–179], are de-

signed to minimize spillover and other sources of surface illumination, which may 

approach the curve for 15 dBi far sidelobes. 
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Figure 6.7  Fraction as of antenna power on surface as a function of beam-axis tilt, for typical antenna 

patters with far sidelobe levels Gfar.= 5, 10, and 15 dBi. 
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Radars operating over barren land or the sea, for which the reflection coeffi-

cient  in (6.17) approaches unity, observe reduced surface noise temperature. As 

pointed out in Section 8.3, the specular reflection coefficient is the product of 

three factors: 

 
0 s v      (6.29) 

where 

0 = Fresnel reflection coefficient of the surface material; 

s = specular scattering factor of a rough surface; 

v = vegetation factor for the surface cover. 

Only the factors 0 and v should be included in applying (6.29) to (6.17), because 

the diffuse scattering that results for s < 1 appears in a narrow cone centered on 

the specular ray in the upper hemisphere, and is unlikely to spread far enough for 

significant power to reach the surface. Horizontal polarization gives 0 near unity 

over most grazing angles, resulting in less absorption by the surface and lower 

surface-temperature than for vertical polarization. 

The beam of a 2-D search radar or the lowest beam of a 3-D radar typically 

has its axis elevated 0.3–0.4 beamwidths above the horizontal, resulting in 

as = 0.2–0.3. In a 2-D radar using a csc
2
 pattern, the fraction of the pattern reach-

ing the surface is reduced by Lcsc, the csc
2
 pattern loss (typically Lcsc  1.6; see 

Section 2.2.4) The upper beams of 3-D radars are more than one beamwidth above 

the surface, as are tracking-radar beams on most targets. For those cases it is the 

far sidelobe level that controls as, as shown on the right side of Figure 6.7. 

6.3.4 Noise Temperature from Antenna Ohmic Loss   

The term ohmic loss is used to distinguish loss components that dissipate energy 

in the antenna structure from those that broaden the beam (e.g., illumination loss) 

or increase sidelobes (e.g., loss from csc
2
 pattern shaping or from phase and am-

plitude errors in the aperture illumination). Components contributing to the anten-

na loss La include waveguide or transmission line between the antenna port and 

radiation into space, along with rotary joints, dielectric coverings or windows, 

phase shifters (in steerable arrays), and any resistive components to which signal 

energy may be coupled. 

The fourth component Ta4 of antenna noise results from this internal loss. It is 

usually small in reflector or lens antennas, for which typical La  0.05 dB and 

physical temperature Tp  T0. Insertion of those values in (6.16) gives Ta4 = 13K. 

It is a more significant source of noise temperature in array systems, where con-

tributors to ohmic loss may be larger, as discussed below. Array components are 

usually assumed to be at a temperature Tp  T0, but may be higher as a result of 
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dissipation of RF power from the transmitter and control power in the phase-

shifters. In active electronically scanned arrays (AESAs), the effects of feed and 

phase-shifter losses are negligible because those components follow the LNA in 

the T/R module. 

6.3.4.1 Feed Loss 

In a passive array, whether electronically or mechanically scanned, the antenna 

elements are connected to the receiver through networks of power combiners that 

establish the desired illumination (or weighting) function across the aperture. Ar-

ray designers minimize the dissipative loss by using waveguide in the feed com-

ponents and coupling as much energy as possible into the signal output, but the 

remaining loss is still significant in most array radars (other than AESAs).  

6.3.4.2 Phase Shifter Loss 

The passive electronically scanned array requires a phase shifter in the feed line of 

each radiating element. Phase shifter loss is typically 0.7–1 dB for a ferrite device, 

or 1.0–1.5 dB for a diode device. That loss is multiplies (adds in dB) directly to 

the feed loss and other antenna losses. 

6.3.4.3 Loss from Water Films 

Precipitation or condensation may form a water film on components such as die-

lectric covers on the array face or feed horn, the exposed surface of a reflector, or 

a radome covering the entire antenna. The loss in liquid water films is discussed in 

Section 10.1.5. Ice and snow crystals have relatively low loss, but as melting oc-

curs they may contain liquid water with high loss. A water film on a reflector sur-

face has only small effect, because the electric field falls to zero at the surface and 

there is little coupling between RF energy and the water.  

6.3.5 Noise Temperature from Antenna Mismatch 

Figure 6.8 shows the components contributing to the noise temperature Ta of a 

mismatched antenna. Matching the impedance of the radiating element to space 

and to the line that connects to the circulator maximizes the echo signal power and 

minimizes the noise temperature. Brookner [6] discusses the contribution of mis-

match to noise temperature for both reflector and array antennas. 
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The external portion of the noise temperature Text = Ta1 + Ta2 + Ta3 at the an-

tenna output appears in (6.17), and also (increased by the factor La) at the input in 

Figure 6.8. The temperature Ta4 is from ohmic loss La, while Tr and Te are the re-

ceiving line and receiver temperatures (see Sections 6.4 and 6.5). The physical 

temperature Tp is that of the receiving line losses Lr and Lt. The physical tempera-

ture characterizing termination within the transmitter (in the absence of the trans-

mitted pulse) is Tpt. This differs from the presentation in [6], where the transmitter 

is represented by a resistive load at physical temperature Tp, without considering 

the possibility of higher transmitter temperature. Also, the antenna loss La in [6] is 

placed between the mismatch and the radiating element, rather than between the 

mismatch and the antenna output terminal as in Figure 6.8. 

The temperature presented to the antenna port via the transmitter path through 

the circulator is 
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1
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tr p

t t

T
T T

L L

 
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 
 (6.30) 

A fraction (1  1/La) of Ttr reaches the mismatched radiating element and is re-

flected back to the output port by the reflection coefficient : 

 
VSWR 1

VSWR+1


   (6.31) 

Applying our notation to the expression developed in [6], with adjustments 

for different transmitter and line temperatures and for two-way passage through 
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Figure 6.8  Noise temperature components with mismatched antenna (after [6]). 
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La, the antenna temperature is modified to include noise reflected by the antenna 

mismatch: 
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The effect of the mismatch is thus to reduce the external noise by the fraction ||
2
, 

replacing it with ||
2
/La

2
 times the physical temperature presented by the transmit-

ter arm of the circulator. This mismatch leads to a fifth input temperature compo-

nent given by 
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 (6.33) 

The appearance of La
2
 in these expressions results from the two-way passage of the 

transmitter noise through the lossy components of the antenna. The term Ta5 is a 

new temperature component not included in Blake’s analysis, but potentially sig-

nificant in radars using array antennas. 

6.3.5.1 Mismatched Mechanically Steered Antenna 

For unity VSWR, || = 0 and (6.32) reverts to (6.17). For a mechanically steered 

antenna with typical VSWR = 1.5, ||
2
 = 0.04, so the change in noise temperature 

is approximately 4% of the difference between transmitter temperature Ttr and 

external temperature. For the typical mechanically steered reflector or array, 

Tpt  T0, and this increase does not exceed 11K even as the external temperature 

Text  0. However, depending on transmitter design, Tpt may significantly exceed 

T0. In a solid-state transmitter, for example, Tpt can be taken as the junction tem-

perature of the final amplifier devices, which may approach 400K.  

6.3.5.2 Mismatched Electrically Steered Array (ESA) 

The significance of Brookner’s paper [6] is greatest when applied to the varying 

mismatch that results when an ESA is steered from broadside. The array area (pro-

jected normal to the beam axis) varies with the cosine of the steering angle . 

However, the typical element pattern Ge() has a gain given by 

    coseG     (6.34) 
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where   1.5 is typical. The departure of the exponent from unity describes the 

loss in gain caused by antenna mismatch. For an array with power reflection coef-

ficient |0|
2
 on broadside, the off-broadside coefficient varies with the steering 

angle  according to [6, Eq. (10)]: 

    
2 2 1

01 1 cos        (6.35) 

For  = 1.5, this gives |(60)|
2
 = 0.32, so with Tpt  400K the increase in an-

tenna noise temperature from (6.33) can approach Ta5 = 120K in a system with 

low Text. For smaller scan angles the problem is less severe, but |(45)|
2
 = 0.19, 

and most ESAs reach that scan angle. The average increase in noise temperature 

over a sector extending max from broadside is 
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This average approaches 50K, as La and Text  0, for  = 1.5, max = 60.  

In the radar equation, the primary effects of the mismatch 0 are included as 

reductions in antenna gains Gt and Gr, and as () in the pattern-propagation fac-

tors for || > 0. However, neither the maximum nor the average noise temperature 

increase should be neglected in estimating performance of an ESA, and especially 

an AESA in which low system noise is relied upon to achieve a specified perfor-

mance. 

A recent text [7] discusses the temperature contribution of antenna mismatch, 

as well as the other sources of antenna noise, in the context of deep space commu-

nications. Because of the very low noise contributed to such a system by a receiv-

er using a maser or high-electron-mobility transistor (HEMT), for which 

Te < 10K, the space communication community has placed great emphasis on de-

sign and modeling methods for reducing antenna noise. The same considerations 

can be applied to radar systems in which the beam is elevated well above the hori-

zon and which are not subject to active jamming. 

6.3.6 Approximation for Antenna Noise Temperature 

Given the complexity of the full expression for antenna noise temperature result-

ing from the preceding sections, Blake’s approximation (6.18) from [3, p. 172, Eq. 

(4.76a)] is often used: 
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The assumptions applicable to this approximation are: 

Fraction of antenna pattern on surface: as = 0.124; 

Physical temperature of surface and antenna: TG = Tp = T0; 

Reflection coefficient of surface:  = 0; 

Noise temperature from lower hemisphere: Ta2 + Ta3 = asT0 = 36K; 

Antenna ohmic loss: La is constant and includes any mismatch effect. 

An example showing the difference between this approximation and the more 

exact treatment, consider the radar and environmental parameters listed in Table 

6.1. Comparing the results of the exact treatment with the approximation: 

Exact: Ta = 78K, Ts = 341K (based on as = 0.111); 

Approximation  Ta  88K,  Ts  350K. 

If the csc
2
 loss is eliminated and the beam elevation is raised to 10 for an elevated 

3-D or tracking radar beam, the comparison gives the following temperatures: 

Exact: Ta = 48K, Ts = 311K (based on as = 0.175); 

Approximation  Ta  57K, Ts  320K.  

For both these cases, the approximation for antenna temperature is within 0.8 dB 

of the more exact calculation, and for system temperature it is within 0.15 dB, 

which is adequate for many purposes. It would be less accurate for an ultralow-

sidelobe antenna or a receiver with very low noise. 

 

Table 6.1  Example Radar 

Carrier frequency f0 3.0 GHz  Wavelength  0.1m 

Transmitter line loss Lt 0.5 dB  Transmitter temperature Tpt 400K 

Antenna beamwidths a, e 1.0, 2.0  Beam axis elevation b 1.2 

Far sidelobe level Gfar 15 dB  Csc2 loss Lcsc 2 dB 

Antenna VSWR 1.5  Scan method Mechanical 

Antenna altitude hr 10m  Antenna ohmic loss La 0.2 dB 

Physical temperature Tp 290K  Receiving line loss Lr 1.0 dB 

Galactic background T0.1 3,050K  Receiver noise figure Fn 1.8 dB 

Surface reflection coefficient  0.9    
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6.4 RECEIVING LINE NOISE TEMPERATURE 

Compared with antenna noise temperature, the calculation of the noise tempera-

ture contribution of the receiving line is simple: (6.11) gives: 

  1r p rT T L   (6.38) 

where Tp is the physical temperature of the receiving line loss Lr. Included in Lr 

are the RF components between the antenna output port and the point in the re-

ceiver where noise figure is defined. These components include the transmission 

line itself, the duplexer receiving path, any additional receiver protection such as a 

solid-state limiter or attenuator (which may also be provided for gain control), an 

RF filter, and possibly a directional coupler used for test purposes. 

6.5 RECEIVER NOISE TEMPERATURE 

Given the noise figure Fn of the receiver, the corresponding noise temperature Te 

is 

  0 1e nT T F   (6.39) 

where T0 is used to conform to the definition of noise figure [8]: 

The ratio of: a) the total noise power per unit bandwidth (at a corresponding output frequency) 
delivered by the system into an output termination, to b) the portion thereof engendered at the 

input frequency by the input termination, whose noise temperature is standard (290K) at all 

frequencies. 

Referring Te to the antenna port, it is multiplied by the receiving line loss Lr to 

give the receiver contribution to system temperature in (6.10). 

6.5.1 Noise in Cascaded Receiver Stages 

The radar receiver typically consists of the stages shown in Figure 6.9. The noise 

input power from the duplexer and receiving line is typically 110 to 115 dBm, 

corresponding to tenths of one microvolt in a 50-ohm circuit. Minimum detectable 

signal levels may approach this noise level. The low-noise amplifier (LNA) oper-

ates at the carrier frequency f0, and is designed with a low noise figure Fn1 1 dB, 

and gain G1 = 15 –20 dB. This brings the input noise several decibels above cir-

cuit noise at the mixer output, after a mixer loss of 6 dB. IF amplifier stages fol-

lowing the mixer increase the noise voltage at the envelope detector output to 
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above the least bit of the analog-to-digital (A/D) converter, typically tenths of one 

millivolt. The net receiver gain is in the order of 60 dB. 

Calculation of receiver noise temperature Te and noise figure Fn can be car-

ried out by considering the noise temperature Tej or noise figure Fnj of each of the 

m circuits that make up the receiver, where j = 1, 2, … m: 
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As an example, m = 7 circuits precede the A/D converters in Figure 6.8. The-

se might have the typical parameters shown in Table 6.2.  

Table 6.2  Description of Typical Receiver Circuits 

j Description 
Fnj 

Te j (K) 
Gj 

1

1

2

m

ej jT G

  
Ratio dB Ratio dB 

1 LNA 1.26 1.0 75.09 100 20.0 75.09 

2 RF filter 1.12 0.5 35.39 0.89 0.5 0.71 

3 Mixer (r = 1.6) 6.31 8.0 1,539.78 0.25 6.0 51.83 

4 IF filter 1.26 1.0 75.09 0.79 1.0 13.42 

5 IF preamp 1.12 0.5 35.39 31.6 15.0 9.95 

6 IF stages 1.26 1.0 75.09 10,000 40.0 0.80 

7 Phase detectors (r = 1.3) 5.01 7.0 1,163.44 0.25 6.0      0.00 

Receiver, from (6.40), (6.41) 1.52 1.83 151.80 1.4106 61.5  151.80 
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Figure 6.9  Stages in typical radar receiver. 
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Noise figures and gains are determined for different circuits as follows: 

For passive circuits: Fnj  = Lj  = 1/Gj;  

For a mixer:  Fnj  = rLj,  = r/Gj, where r is the noise-temperature   

ratio [9, p. 33], typically 1.2 –2.0 = 2  1 dB; 

For amplifiers:  Fnj and Gj are as specified in the table. 

The noise temperature Tej is calculated as T0(Fnj  1). Note that placing the RF 

filter after the LNA minimizes the effect of its loss, and that the IF stages after the 

preamplifier make an insignificant contribution to noise temperature in a typical 

receiver. In spite of the LNA gain of 20 dB, the mixer in this case makes a signifi-

cant contribution to the overall receive noise figure. 

6.5.2 Input and Output Levels 

The output noise power from the receiver to the A/D converter is the product of 

input noise N = kTsBn and the net gain in the receiving path from the antenna, in-

cluding the factor 1/Lr. As an example, assume from the example radar of Table 

6.1 the values Ta = 79K, Lr = 1.0 dB, and Tr = 75K. The system noise temperature 

from (6.10) is: 

 79 75 1.26 151.8 345Ks a r r eT T T L T         

Assuming a noise bandwidth Bn = 1 MHz, the corresponding noise power and rms 

noise voltage in a 50-ohm circuit at the antenna terminal are: 

N = kTsBn = 113.2 dBm, Enin = 0.49 V 

The net gain of the receiving system, from the antenna terminal to the detector 

output, is  

 61.5  1.0 = 60.5 dB.  

The resulting output noise power is 

 Nout = 113.2 + 60.5 = 52.7 dBm,  

and the corresponding rms output voltage is 

 Enout = 0.52 mV (in a 50-ohm circuit).  
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6.5.3 Quantizing Noise 

Modern radars use digital signal processing in which the analog inputs are con-

verted to digital form either after downconversion to baseband, as shown in Figure 

6.8, or by direct conversion of the IF voltage. The A/D converter adds a quantiz-

ing noise voltage Eq to the thermal noise at the output: 

 max

112 2 12
q b

EE
E




   (6.42) 

where  

E is the voltage corresponding to the least bit of the A/D converter;  

Emax is the peak voltage that corresponds to the full A/D output;  

b is the number of A/D bits that express the peak voltage that varies over 

Emax.  

The gain prior to the A/D converter is adjusted so that the rms noise voltage is 

qE: 

 out 12n qE q E qE    (6.43) 

where q  1.5 is a constant chosen to balance the competing needs for large dy-

namic range and small quantizing noise. The thermal noise power is 12q
2
 times 

the quantizing noise power. This is equivalent to an added input noise temperature 

term given by 
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The dynamic range DR is defined as the ratio of (1) the average power of a 

sinusoidal output signal above which the A/D converter saturates to (2) the mean 

thermal noise power, referred to the receiver output. From (6.42) and (6.43) this is 

 

22

out max max

2 2

out out

2 1 2
DR

8

b

n n

P E

qE E

 
    

 
 (6.45) 

Both the quantizing noise temperature and the dynamic range vary inversely as q
2
, 

so the need for large dynamic range and small temperature contribution are in 

conflict. 

As an example, assume that the thermal noise at the output is set to q = 2  = 

3 dB above the quantizing noise. From (6.44)  
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Added to Ts, this increases the input noise temperature by a factor 1 + 1/24 = 1.04, 

or 0.18 dB relative to the result of (6.10). For this same value of q, with b = 12, 

the dynamic range from (6.45) becomes 
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Combining (6.44) and (6.45), the quantizing noise temperature at the input 

can be expressed in terms of the dynamic range as 
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The dynamic range available for b-bit converters has been given in the literature 

as  
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
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where different authors use x = 0, 1, or 2. Results of (6.46) are shown in Figure 

6.10, for b = 10 –14 bits. The dashed lines show the increase in dB resulting from 

different values of x in (6.47): 2.22 dB for x = 0, 0.67 dB for x = 1, and 0.18 dB 

for x = 2. Depending on the investment in the transmitter and antenna, selection of 

the gain prior to the A/D converter to achieve the dynamic range given by x = 2 is 

often the best choice in receiver design. 

6.6 SUMMARY OF RECIVING SYSTEM NOISE 

6.6.1 Thermal Noise Dependence on Carrier Frequency  

The noise spectral density resulting from an input noise temperature Ts, as calcu-

lated by the simple expression N0 = kTs, is correct to within 0.1 dB for receivers in 

which the ratio of carrier frequency to noise temperature f0/Ts  10
9
 (e.g., X-band 

at 10K). The simple expression underestimates N0 by 1.1 dB for f0/Ts  10
10

 (e.g., 

W-band at 10K), and the error increases for larger ratios as may be encountered in 

terahertz and optical-band radar. 
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6.6.2 Applicability of Blake’s Method 

The many external and internal sources of radar noise are identified in this chap-

ter, and expressions given for estimating their contribution to input noise tempera-

ture. Blake’s method provides a sound basis for evaluation of the noise tempera-

ture, which he expresses in the form of (6.10). 

Blake also gives the approximation (6.18), based on 12.4% of the antenna 

pattern’s power lying in the lower hemisphere, which gives adequate results for 

most practical radar situations. 

6.6.3 Refined Method for Modern Radar 

To refine Blake’s method and adapt it to modern radar situations, more exact 

models of the troposphere are used, and the contribution of the surface is refined 

in Section 6.3.3, accounting for the antenna’s elevation pattern and the reflection 

coefficient of the surface. The effect of antenna mismatch, especially significant 

in electronically steered arrays, is discussed in Section 6.3.5 and is based on 

Brookner’s recent work. The added noise temperature term from mismatch, in-

cluding the effect of transmitter temperature, typically approaches 120K at the 

edge of the scanned volume, or 50K when averaged over that volume. 
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Figure 6.10  Noise temperature increase as a function of dynamic range. 
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6.6.4 Receiver and Quantization Noise Temperature 

The modeling of receiver noise, including the effect of quantization in an A/D 

converter at the output, is presented in Section 6.5. A new relationship between 

quantizing noise temperature, the number of bits in the A/D converter, and the 

dynamic range of the receiver is developed. This relationship justifies use of a 

simple expression for the available dynamic range: 
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DR 2 6.02 2  dB
b

b


    (6.48) 

The expression should be used when the input noise temperature is to be held 

within tenths of a decibel of the value given by (6.10). 
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CHAPTER 7 

Atmospheric Effects 

Atmosphere affects on radar propagation include:  

 Refraction (bending) of the rays between the radar and the target;  

 Attenuation the waves that travel those paths;  

 Rotation in the polarization of waves in the ionosphere (at frequencies below 

S- band).  

Attenuation and Faraday rotation have obvious relevance to the radar equation, 

but refraction must also be considered because the refracted ray from the radar lies 

above the geometric straight line to the target, reducing the attenuation relative to 

that applicable to the straight-line path. In addition, the bundle of rays leaving the 

radar within the elevation beamwidth is spread by greater bending in the lower 

portion of the beam, causing the power density to be reduced more than by the 

factor 1/R
2
 for free-space transmission.  

Blake in [1] presents a thorough treatment of the atmospheric effects that re-

mains valid today. The purpose of this chapter is to summarize and update the 

data, discuss practical modeling and computational methods, and present the re-

sults in metric units and in graphical formats that improve reading accuracy and 

interpretation. 

7.1 TROPOSPHERIC REFRACTION 

Blake’s method of calculating attenuation uses integration along paths determined 

by ray-tracing through the troposphere. A model for the tropospheric refractive 

index as a function of altitude is required, and we present alternative models that 
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permit evaluation of different radar siting and weather effects in all radar frequen-

cy bands.  

7.1.1 Refractive Index of Air 

The complex refractive index is defined [2] as: 

A dimensionless complex quantity, characteristic of a medium and so defined that its real part 

is the ratio of the phase velocity in free space to the phase velocity in the medium. The prod-

uct of the imaginary part of the refractive index and the free-space propagation constant is the 

attenuation constant of the medium. 

Refraction of radar waves in the troposphere depends on the real part n of the re-

fractive index, which is a function of temperature T, air pressure P, and partial 

pressure e of the water-vapor content.
1
  

The real part of the refractive index is usually expressed in terms of the re-

fractivity N, the departure of n from unity and given by [3, p. 7, Eq. (1.15)]: 
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 (7.1) 

where 

T  =  temperature in K; 

Pda  =  partial pressure of dry air in mbar; 

e  =  partial pressure of water vapor in mbar; 

P  =  Pda + e = air pressure in mbar. 

This equation is accurate to within  0.5% at all radar frequencies, decreasing 

slightly for frequencies above the 60-GHz oxygen-absorption region.  

The partial pressure e can be expressed as a function of the water vapor densi-

ty  [4, p. 16-3]: 

 
216.68

we

T


  (7.2) 

where  is in g/m
3
. Thus (7.1) can be written as 
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77.6 0.332da

w

P
N

T T

 
    

 
 (7.3) 

                                                           
1  The unit of pressure commonly used is the millibar (mbar), defined as 100 pascals or 1,000 

dyne/cm2. It is approximately 1/1000 times the atmospheric pressure at sea level. 
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7.1.2 Standard Atmosphere 

The standard atmosphere was defined by a committee of U.S. experts during the 

1950s, and the 1976 version [5] that remains in effect at this writing was updated 

by experts from NOAA, NASA, and USAF. It is identical to the ICAO 1964 

standard up to 32-km altitude and to the ISO 1973 standard up to 50 km. Tem-

perature and pressure data below 30-km altitude, shown in Figure 7.1, are relevant 

to radar. Note that the pressure profile is close to an exponential, although its 

slope changes at  11 km altitude.  

Temperature is characterized by three linear segments with slopes changing at 

11 km and 20 km. The parameters at sea level are: 

Temperature T(0) 288K; 

Pressure P(0) 1,013.25 mbar. 

where (0) denotes the altitude of sea level. The pressure profile can be approxi-

mated by two exponential sections:
2
 

                                                           
2  Blake [1, p. 205] presents an atmospheric model with equations that contain obvious typographical 

errors; we will use here the model given by Figure 7.1  and (7.4), along with Blake’s Table 5-4 for 
water-vapor density, expressed by (7.5). 
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(a) Pressure on logarithmic scale (b) Temperature on linear scale 

Figure 7.1  Temperature and pressure from U.S. Standard Atmosphere, 1976. 
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 (7.4) 

7.1.3 Inclusion of Water Vapor 

The standard atmosphere does not specify the water-vapor content of the air, but 

the sea-level value for the standard atmosphere is 0 = 7.75 g/m
3
. This can be 

compared with the density of saturated water vapor, 12.8 g/m
3
 at 288K. When 

combined with the standard atmosphere, this leads to the following sea-level pa-

rameters  

Density of water vapor w0 7.75 g/m
3
; 

Density of saturated water vapor wmax 12.8 g/m
3
; 

Relative humidity RH 60 %, 

Partial pressure of water vapor e0 10.3 mbar (from (7.2); 

Partial pressure of dry air Pda0 1,002.7 mbar. 

The sea-level refractivity and its dry-air and water-vapor components can be cal-

culated using (7.1): 

Refractivity N0 319.2 ppm; 

Dry-air refractivity Nd0 70.1 ppm; 

Water-vapor refractivity Nw0 49.1 ppm. 

Thus 85% of the sea-level refractivity results from the dry air and 15% from water 

vapor, even though the partial pressure of water vapor is only 1% of the total pres-

sure. 

Blake [1, p. 207] presented a vertical profile of measured w as a function of 

altitude, which can be scaled to the sea-level value w0 = 7.75 g/m
3
 to obtain Fig-

ure 7.2. The profile for water-vapor density can be expressed by a three-section 

model: 
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where the sea-level water-vapor density is w0 = 7.75 g/m
3
, for 60% relative hu-

midity in the standard atmosphere. Separate profiles must be used for air pressure 

and water-vapor density to account for the concentration of water vapor at low 

altitudes.  

7.1.4 Vertical Profile of Refractivity 

Given profiles of T, P, and w, (7.3) is applied to obtain the refractivity profile of 

the standard atmosphere. In Figure 7.3 that profile is compared with a dashed line 

representing a single-section exponential fit to the low-altitude refractivity values 

that dominate the effect of the troposphere. This is one of a family of refractivity 

profiles known as the CRPL Exponential Reference Atmospheres, developed by 

the Central Radio Propagation Laboratory.
3
  

The CRPL Exponential Reference Atmospheres are defined by [3, p. 65, Eq. 

(3.43)]: 
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 (7.6) 

where 

                                                           
3  CRPL was a branch of the U.S. National Bureau of Standards in Boulder, Colorado, where exten-

sive efforts to measure and model the atmosphere were carried out. The laboratory was transferred 

to the Environmental Science Services Administration in 1965, and subsequently to the National 
Oceanic and Atmosphere Agency (NOAA).  
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Figure 7.2  Water-vapor density versus altitude for w0 = 7.75 g/m3. 
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h  =  altitude in km above sea level; 

N0  =  sea-level refractivity in ppm; 

h0  =  atmospheric scale height in km;
 4

 

Ns  =  refractivity at altitude hs; 

hs  =  surface altitude in km above sea level. 

The approximation symbol appears in the last form of (7.6) because the scale 

height h0 used with N0 should be slightly higher than for Ns. The scale heights h0 

given in [3, p. 66, Table 3.3] are shown in Table 7.1, and can be expressed for 

200  N  450 to an accuracy of 0.02 km by 

  
6

0 4.479 8.17 1 19 1
450 450

N N
h N

   
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 (7.7) 

The CRPL models are based on many measurements conducted during the 

1950s. The dashed line in Figure 7.3 is for a surface refractivity Ns = 313 ppm, 

used by Blake [1, p. 183] as the average for the United States. The parameters 

presented in Table 7.1 are applicable to different site altitudes and weather condi-

                                                           
4  The scale height h0 in [1, 3] is expressed by its reciprocal c in km1, but the scale height h0 (defined 

as the altitude in km at which N falls to 1/e of its surface value) has a clear physical interpretation. 
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Figure 7.3  Refractivity versus altitude, for w0 = 7.75 g/m3. 
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tions. The parameter ke represents the ratio of effective Earth’s radius to true radi-

us ae = 6,378 km, and ke = 4/3 is the value commonly used in radar calculations. 

The motivation for and development of the CRPL exponential reference at-

mospheres are discussed in detail in [6], which also presents climatic charts of the 

U. S. showing contours of refractivity for day and night conditions in February 

and August, adjusted to sea-level values N0. Extreme values on these charts are as 

follows: 

Maximum  N0  =  390 on the Gulf Coast on an August day; 

Minimum  N0  = 285 in southern Nevada on a February day.  

The entry Ns = 450 in Table 7.1 is observed only in hot, humid environments. The 

entry N0 = 200 is associated in [3] with an altitude of 3 km, near the maximum 

altitude for land-based radar. The U.S. average Ns = 313 is associated in the CRPL 

data with a surface altitude of 700 ft (213m), for which the corresponding sea-

level N0 = 323.  

The CRPL data suggest that 250  N0  400 covers the likely variation in sea-

level conditions, with N0  320 a nominal value. The refractive index profile for a 

given site altitude is then found from (7.6) using the selected N0. 

7.1.5 Ray Paths in the Troposphere 

7.1.5.1 Ray-Tracing Method 

A ray leaving the radar at elevation angle 0 is gradually bent downward as a re-

sult of the decrease in the tropospheric refractive index with altitude h. The path is 

calculated for a known vertical profile of refractive index by ray-tracing, in which 

the range Rd = ctd/2, as measured by the time delay td of the radar echo, is given by 

[1, p. 182, Eq. (5.9)]: 

Table 7.1  Parameters of CRPL Exponential Reference Atmospheres 

Surface Refractivity 

Ns (ppm) 

Scale Height 

h0 (km) 

Earth Radius  

Constant ke 

450.0 4.479 2.784 

400.0 5.356 1.910 

350.0 6.276 1.552 

313.0 6.951 1.403 

301.0 7.162 1.366 

250.0 7.960 1.251 

200.0 8.446 1.178 
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where 

n(h)  =  1 + N(h)  10
6

 =vertical profile of refractive index; 

hs  =  altitude in km above sea level of the radar; 

h  =  altitude in km above sea level along the path; 

ae  = 6,378 km = radius of the Earth. 

In order to use the result of (7.8) in calculation of attenuation along the path, it 

must be inverted to yield altitude h(R,0). There is no closed-form equation for 

this, so root-finding methods must be used. 

7.1.5.2 Altitude Based on Effective Earth’s Radius 

The effective Earth’s radius keae is defined so that a ray leaving a radar antenna at 

altitude hs above sea level at elevation angle 0 reaches an altitude h at range R 

given by [1, p. 187, Eq. (5.15)] 
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For radar ranges at which the effective Earth’s radius can be used, the following 

approximation is valid [1, p. 188, Eq. (5.16)]: 

  
 

2

0

0 0

cos
, sin

2
s

e e

R
h R R h

k a


      (7.10) 

For example, at R = 1,000 km the altitude error is less than 0.4% of the value from 

(7.9). The approximation permits attenuation calculations to be performed with 

acceptable accuracy over many ranges and elevation angles without the complexi-

ty of ray-tracing. 

7.2 ATTENUATION IN THE TROPOSPHERE 

The attenuation for a radar path is expressed as the product of a two-way attenua-

tion coefficient in dB/km and the pathlength in km through the attenuating medi-

um. In the equations that follow, the two-way tropospheric attenuation coefficient 

denoted by k is used in place of , which in the referenced literature denotes the 

one-way coefficient in dB/km.  



 Atmospheric Effects 233 

 

7.2.1 Sea-Level Attenuation Coefficients of Atmospheric Gases 

Attenuation results from the imaginary part of the complex refractive index, which 

varies with radar frequency f and with atmospheric pressure P, temperature T, and 

water-vapor density . The relationships between these quantities and attenuation 

(absorption) were developed in an MIT Radiation Laboratory report by J. H. Van 

Vleck, condensed in [7]. That theory is used as the basis for the treatment in [3, 

Chapter 7] and by Blake [1, pp. 200–204].  

Oxygen and water vapor cause attenuation, both having strong, narrow ab-

sorption lines within the millimeter-wave spectrum (and at 22.2 GHz for water 

vapor). The absorption extends at lower levels throughout bands used by radar.  

7.2.1.1 Oxygen Attenuation 

The primary oxygen absorption lines are centered near fO1  60 GHz (O1 = 0.50 

cm). Rather than a single line, there are actually a sequence of resonances corre-

sponding to odd values of the rotational quantum number N, listed in Table 7.2 up 

to order 45, beyond which the contributions to attenuation are negligible. Note the 

well separated resonance at f1 = 118.75 GHz, which will appear in subsequent 

plots. 

The oxygen attenuation coefficient k0 was derived by Van Vleck [7 pp. 646–

656], whose equations as given in [1, pp. 200–201] (with the initial constant dou-

bled for two-way attenuation) are as follows: 

 

Table 7.2  Oxygen Resonance Frequencies (GHz) 

N fN+ fN N fN+ fN 

1 56.2648 118.7505 25 65.7626 53.5960 

3 58.4466 62.4863 27 66.2978 53.0695 

5 59.5910 60.3061 29 66.8313 52.5458 

7 60.4348 59.1642 31 67.3627 52.0259 

9 61.1506 58.3239 33 67.8923 51.5091 

11 61.8002 57.6125 35 68.4205 50.9949 

13 62.4112 56.9682 37 68.9478 50.4830 

15 62.9980 56.3634 39 69.4741 49.9730 

17 63.5685 55.7839 41 70.0000 49.4648 

19 64.1272 55.2214 43 70.5249 48.9582 

21 64.6779 54.6728 45 71.0497 48.4530 

23 65.2240 54.1294    

Values of fN from [8], as listed in [1, Table 5-3]. 
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where 

kO  = two-way attenuation in dB/km; 

f  = frequency in GHz; 

P  = air pressure in mbar; 

h  = altitude in km; 

T  = temperature in K. 

The term F0
2
N0 in (7.11) gives the nonresonant absorption, while FN

2
N result 

from the resonances listed in Table 7.2. The altitude factor g(h) in (7.13), (7.14) is 

included in the Blake’s equations, based on [8]. The results for the sea-level at-

mosphere are shown in Figure 7.4. 
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7.2.1.2 Water-Vapor Attenuation 

The attenuation coefficient of water vapor was also derived by Van Vleck [7, pp. 

656 –664], based on the primary water-vapor absorption line at fW1 = 22.235 GHz. 

Subsequent work has included additional absorption lines at frequencies 

fW2 = 183.3 GHz and fW3 = 323.8 GHz. The expression for two-way water-vapor 

attenuation in dB/km is 
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Figure 7.4  Sea-level attenuation coefficient kO of atmospheric oxygen.  
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where 

h  =  altitude in km; 

w(h)  =  density of water vapor in g/m
3
 at altitude h; 

P(h)  =  air pressure in mbar at altitude h; 

T(h)  =  temperature in K at altitude h; 

FWz  =  resonant line structure; 

fWz  =  resonant frequencies fW1…3 in GHz; 

fW  =  resonant line width in GHz. 

The term in (7.19) involving f /100 is the nonresonant (residual) water-vapor coef-

ficient from lines above 100 GHz, while that with f /fr1 is the sum of resonant con-

tributions defined by (7.20).
5
 The water-vapor attenuation coefficient for a stand-

ard density w(0) = 7.75 g/m
3
 is shown in Figure 7.5. 

7.2.1.3 Total Tropospheric Attenuation Coefficient 

Figure 7.6 shows the combined attenuation coefficient for the sea-level atmos-

phere with water-vapor density of 7.75 g/m
3
, and the individual contributions of 

oxygen and water vapor.  

                                                           
5  Constants in (7.19)–(7.21) have been changed from those in the literature to be consistent with use 

of a single temperature reference T(0) = 288K, rather than both 288K and 300K appearing in some 

literature; water-vapor density  in g/m3 rather than partial pressure in torr; and air pressure in mbar, 
rather than in torr. 
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Figure 7.5  Sea-level attenuation coefficient kW of water vapor with density w0 = 7.75 g/m3.  



 Atmospheric Effects 237 

 

7.2.2 Variation of Attenuation Coefficients with Altitude 

The attenuation coefficients of oxygen and water vapor vary in different ways as 

the radar beam passes upwards through the troposphere. The atmospheric and 

geometric models developed in Section 7.1 provide the data needed to calculate 

the attenuation on a path to a target, or through the entire atmosphere into space.  

Equations (7.11)–(7.21) for attenuation coefficients include several terms that 

depend on altitude above sea level. We can find the coefficients for any altitude 

within the troposphere using vertical profiles of pressure P(h), temperature T(h) 

and water-vapor density w(h) given by (7.4), Figure 7.1(b), and (7.5). Typical 

results are shown in Figure 7.7, for altitudes h = 0, 3 km, and 10 km. Note that the 

attenuation at resonant frequencies is reduced much more slowly than the 

nonresonant term as altitude increases. For this reason, a simple scaling of atten-

uation coefficients with altitude or atmospheric pressure cannot be used. Instead, 

the attenuation must be calculated by integration over the actual ray path, using 

coefficients that vary with altitude. 

7.2.3 Attenuation Through the Troposphere 

The total two-way attenuation Lt(hm) along a path leaving the radar at elevation 

angle 0 and reaching altitude hm km is given by [1, p. 209, Eq. (5.46)]: 
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Figure 7.6  Sea-level attenuation coefficients of atmosphere: combined attenuation k (solid line); 

oxygen kO (dashed line), water-vapor kW for density w0 = 7.75 g/m3 (dash-dot line). 
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where 

n(h)  =  refractive index profile; 

k(h)  =  attenuation coefficient in dB/km at altitude h km; 

ae  =  6,378 km = radius of Earth 

0  =  elevation angle of beam leaving radar; 

hs  =  altitude of radar site in km. 

For a path from sea level into space, the lower altitude limit hs = 0 and the upper 

altitude limit can be taken as hm = 100 km. Figure 7.8 shows the attenuation into 

space for different beam elevations as a function of frequency. 

7.2.4 Attenuation to Range R 

Attenuation L(R,) for a path to range R at beam elevation  can be found by 

plotting the results of (7.22) as a function of R(hm,) from (7.8). The results, 

shown in Figures 7.9–7.18 are equivalent to those presented by Blake [1, pp. 210–

216, Figures 5.12–519], widely used to obtain the atmospheric attenuation used in 
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Figure 7.7  Attenuation coefficient k as a function of frequency at different altitudes, for an atmos-

phere with sea-level water-vapor density w0 = 7.75 g/m3: h = 0 (solid line); h = 3 km (dashed 

line), h = 10 km (dash-dot line). 
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the radar equation. The plots presented here are based on a sea-level water-vapor 

density w0 = 7.75 g/m
3
, corresponding to a relative humidity of 60% in the stand-

ard atmosphere, and are plotted on log-log scales for better reading accuracy. 
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Figure 7.8  Atmospheric attenuation from sea level through the troposphere as a function of frequency 

at different beam elevation angles: standard atmosphere with water-vapor density w0 = 7.75 g/m3. 
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Figure 7.9  Atmospheric attenuation to range R for frequency f0 = 225 MHz at different beam eleva-

tion angles, for a standard atmosphere with water-vapor density w0 = 7.75 g/m3. 
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Figure 7.10  Atmospheric attenuation to range R for frequency f0 = 450 MHz at different beam eleva-

tion angles, for a standard atmosphere with water-vapor density w0 = 7.75 g/m3. 
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Figure 7.11  Atmospheric attenuation to range R for frequency f0 = 1.3 GHz at different beam eleva-

tion angles, for a standard atmosphere with water-vapor density w0 = 7.75 g/m3. 
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Figure 7.12  Atmospheric attenuation to range R for frequency f0 = 3.0 GHz at different beam eleva-

tion angles, for a standard atmosphere with water-vapor density w0 = 7.75 g/m3. 
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Figure 7.13  Atmospheric attenuation to range R for frequency f0 = 5.6 GHz at different beam eleva-

tion angles, for a standard atmosphere with water-vapor density w0 = 7.75 g/m3. 
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Figure 7.14  Atmospheric attenuation to range R for frequency f0 = 10 GHz at different beam elevation 

angles, for a standard atmosphere with water-vapor density w0 = 7.75 g/m3. 
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Figure 7.15  Atmospheric attenuation to range R for frequency f0 = 15 GHz at different beam elevation 

angles, for a standard atmosphere with water-vapor density w0 = 7.75 g/m3. 
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Figure 7.16  Atmospheric attenuation to range R for frequency f0 = 35 GHz at different beam elevation 

angles, for a standard atmosphere with water-vapor density w0 = 7.75 g/m3. 
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Figure 7.17  Atmospheric attenuation to range R for frequency f0 = 45 GHz at different beam elevation 

angles, for a standard atmosphere with water-vapor density w0 = 7.75 g/m3. 
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Figure 7.18  Atmospheric attenuation to range R for frequency f0 = 95 GHz at different beam elevation 

angles, for a standard atmosphere with water-vapor density w0 = 7.75 g/m3. 

7.2.5 Attenuation for Dry and Moist Atmospheres 

Attenuation data are sometimes needed for water-vapor densities other than the 

w0 = 7.75 g/m
3
 used in Figures 7.8–7.18. Because the relative contributions of 

oxygen and water vapor vary with frequency and altitude, exact attenuation curves 

for other water-vapor densities require that calculations using (7.22) be repeated 

for other moisture conditions. Blake’s solution to this problem is to plot separate 

families of curves for kO and for kW at 7.75 g/m
3
 at frequencies above L-band. 

The total attenuation k is then found by multiplying the plotted kW in decibels by 

the ratio w/7.75 g/m
3
 and adding it to kO for oxygen. 

An alternative to Blake’s method of adjusting for water-vapor content, which 

avoids the multistep procedure, is to scale readings from the curves of Figures 

7.8–7.18 directly by a water-vapor factor W, defined as 

 
 

   
1

0 0
0 7.75

w

O WW k k
k

  



 
  

 
 (7.23) 

where k(0), kO(0), and kW(0) are the attenuations coefficients at sea level. Fig-

ure 7.19 shows W for several values of . The scaled attenuation given by 

L(hm,w) = W(w) L(hm,7.75) is only approximate, because it fails to model the 
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variation in the relative coefficients as a function of altitude, but as shown in Fig-

ure 7.20 it is close to exact values. The differences are less than the typical errors 

in knowledge of water-vapor density. For average atmospheric conditions the 

curves given in Figures 7.8–7.18 may be used directly. 
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Figure 7.19  Water-vapor factor W as a function of frequency for different water-vapor densities. 
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Figure 7.20  Atmospheric attenuation L as a function of range for f0 = 10 GHz at different elevation 

angles, with water-vapor density w0 = 12.5 g/m3. Solid lines: exact results of (7.22); dashed lines: 

approximation using product of attenuation for w0 = 7.75 g/m3 and water-vapor factor Wp. 
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7.3 ATTENUATION FROM PRECIPITATION 

7.3.1 Rain Attenuation Coefficient at 293K 

Theoretical studies of rain attenuation are presented by Goldstein [11] and Gunn 

and East [12], whose results remain in extensive use. Much of that analysis and 

the today’s models of weather attenuation originated in a 1945 company report by 

Ryde and Ryde [13] and their subsequent paper published in 1946 by the Physical 

Society, London [14], neither of which is available today. More recent adjust-

ments are presented by Blake [1, pp. 214–221], and Nathanson [15, pp. 226–228]. 

The standard model that relates attenuation coefficient kr to rainfall rate 

takes the form [1, p. 215, Eq. (5.47)]: 

    dB/kmb

r r rk r ar   (7.24) 

where 

rr  = rainfall rate in mm/h; 

a  = multiplicative factor that depends on frequency f0; 

b  = exponent that depends on frequency f0. 

Blake presents equations for a and b that apply for a temperature of 291K, and 

are updated here to match data in [1, p. 228, Table 6.4]: 

  
 

     

1 2
2 2 2

0 0 0 1

0 1 2 1 2 0.65
2 2 2 2 2 2

0 2 0 3 0 4

1

1 1 1

C f f f
a f

f f f f f f




  
 (7.25) 

    
1 2

2

0 1.30 0.0372 1 1 fb f x    
 

 (7.26) 

where 

C0  =  6.2  10
5

,  f1 = 3 GHz,  f2 = 35 GHz,  f3 = 50 GHz,  f4 = 110 GHz, and 

xf  =  16.7log(0.13f0). 

The changes made here to Blake’s equations are that the last term in the denomi-

nator of (7.25) has an exponent 0.65 rather than 0.5, and the parameter xf is now 

16.7log(0.13f0) rather than 16.7log(0.1f0). The effect decreases a( f0) for f0 > 90 

GHz, and shifts the peak of the curve for b( f0) from 10 GHz to 7.75 GHz. The 

resulting two-way rain attenuation coefficient kr is shown as a function of fre-

quency in Figure 7.21, for different rainfall rates. 

Nathanson’s table gives slightly different values of a and b for horizontal and 

vertical polarization, consistent with observations that predict a gradual shift of 

circularly polarized waves to elliptical polarization. That is a critical issue in 
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communications systems with polarization diplexing, but the average of each con-

stant over both polarizations is adequate for calculating radar attenuation in rain, 

giving accuracy better than can be justified by weather models. Medhurst [16] and 

Blake note that measured attenuation often exceeds that predicted by theory. 

Blake suggests that this may result from relative humidity approaching 300% dur-

ing rainstorms, an effect that can be modeled by increasing w in (7.23) and apply-

ing the resulting W to increase the attenuation of the atmospheric gases.  

7.3.2 Temperature Dependence of Rain Attenuation 

Several studies [10–13, 17, 18] have shown that rain attenuation varies signifi-

cantly with the temperature of the water droplets. Ryde’s results, presented in [17, 

p. 19-12, Table 19-1] indicate that the attenuation coefficients for T = 291K, used 

in the model of the preceding section, should be multiplied by correction factors 

listed in Table 7.3. While these values differ significantly from some earlier re-

sults in [12, 13], especially for the longer wavelengths at low temperatures, they 

appear to represent an adequate model. The data in Table 7.3 can be approximated 

by the following approximation: 
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Figure 7.21  Two-way rain attenuation coefficient at T = 293K as a function of frequency for different 

rainfall rates, calculated using (7.24) with a and b from (7.25) and (7.26). 
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   1 100 1.5 ,  0.015 m 

1,                                0.015 m 

Tb

T TC a      

  
 (7.27) 

where the constants are given by: 

a273 = 0.2, a283 = 0.1, a291 = 0, a303 = 0.12, a313 = 0.21; 

b273 = 0.6,  b283 = 0.5, b291 = 0,  b303 =   0.27,  b313 =   0.25. 

The results of (7.27) are plotted in Figure 7.22 as functions of wavelength in 

m and frequency in GHz. The abrupt transition to unity at 0.015m wavelength is 

unrealistic, but for shorter wavelengths the actual correction is less than 10% and 

does not require accurate modeling. 

The effects of higher and lower temperatures are compared in Figure 7.23 for 

high and low rainfall rates. It can be seen that only the microwave and lower radar 

bands are affected significantly by changing temperatures, but that the coefficient 

can increase or decrease by a factor of two at L-band and by 1.6 for S-band. Un-

certainties in the temperature profile over the extent of the rain region thus prevent 

accurate estimation of losses for X-band and lower frequencies, but the largest 

percentage errors occur where the attenuation is low, and the resulting errors in 

range calculation are moderate. 

 

Table 7.3  Temperature Correction Factor CT for Rain Attenuation 

Rainfall Rate 

(mm/h) 

Wavelength 

(m) 

Temperature (K) 

273 283 293 3003 313 

2.5 

0.0003 1.00 1.00 1.00 1.00 1.00 

0.001 1.00 1.00 1.00 1.00 1.01 

0.005 1.01 1.01 1.00 0.99 0.98 

0.0125 0.95 0.96 1.00 1.05 1.10 

0.032 1.28 1.14 1.00 0.86 0.72 

0.10 1.73 1.30 1.00 0.79 0.64 

50.0 

0.0003 1.00 1.00 1.00 1.00 1.00 

0.001 1.00 1.00 1.00 1.00 1.01 

0.005 1.02 1.01 1.00 0.98 0.97 

0.0125 0.99 0.99 1.00 1.02 1.04 

0.032 0.91 0.96 1.00 1.01 1.01 

0.10 1.75 1.31 1.00 0.78 0.62 
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7.3.3 Rainfall Rate Statistics 

The probability of encountering a given rain attenuation depends of the type of 

climate in which the radar is operated. Figure 7.24 shows the percentage of time 

and corresponding hours per year in which rainfall exceeds a given rate for four 

climates. Taking the continental temperate climate as an example, a “moderate” 

rate of 3 mm/h can be expected about 1% of the time, or 90 hours per year. The 

probability of rain considered “heavy,” 16 mm/h, is about 0.2%, corresponding to 

18 hours per year. The need to include these levels of attenuation in a range calcu-
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Figure 7.22  Temperature correction factors for rain attenuation as a function of wavelength and  
frequency. 
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Figure 7.23  Comparison of rain attenuation coefficients at T = 273K, 291K, and 313K. 
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lation depends on the required reliability of the radar service. For example, signif-

icant range reduction for 18 hours per year might be unacceptable for an airport 

surveillance radar at a heavily used location, but acceptable for other radars. 

Much more detailed statistics on rain can be found in the book devoted to this 

subject by Crane [19], intended to describe rain attenuation problems on commu-

nications paths. Among the data he presents are the maximum altitudes of the rain 

cells corresponding to the rainfall rates observed with 0.001% and 1.0% probabil-

ity. At latitudes between 40 those altitudes are 4–5.5 km and 2.7–4.6 km, re-

spectively. Nathanson [15, p. 223] presents a plot of altitude as a function of rain-

fall rate, showing maximum altitude up to 9 km. He suggests that a model using 

uniform rate up to 4-km altitude is adequate in many cases. On the other hand, 

there have been measurements of rain reflectivity corresponding to rates exceed-

ing 250 mm/h in thunderheads, supported by updrafts at altitudes near 12 km, dur-

ing times when the surface received no rain. 

Nathanson notes that “design of air defense, air traffic control, or multimode 

airborne systems is quite different with anything near a 20-mm/h rainfall rate. It is 

also a question as to the enemy’s ability to operate in such an environment. Mili-
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Figure 7.24  Occurrence of rainfall rates in four types of climate [after 18, p. 16-11, Figure 16-8]. 
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tary and civil air surveillance radars usually specify widespread 1- to 4-mm/h rain 

and sometimes a storm of perhaps 16 mm/h over a diameter of 10 to 20 km. Heav-

ier storms have smaller diameters.” He suggests an approximate relationship that 

in metric units converts to 

 41.7 23.7log rd r   (7.28) 

where d = storm diameter in km and rr = rainfall rate in mm/h. 

Data on the areas occupied by rainstorms are sparse. The higher rainfall rates 

are more limited in horizontal extent, with areas near 5 km
2
 for intense rain cells. 

Table 7.4 shows typical pathlengths and attenuations for large regions of light rain 

and small regions of intense rain. The pathlengths and attenuations apply to eleva-

tion angles such that the path remains below the maximum rain altitude as it pass-

es within the rain volume. For comparison, the atmospheric attenuation of the air 

is shown in the last row of the table. It can be seen that the presence of light rain 

has a small effect at X-band over the extent of the rain volume compared to that of 

the air, while heavy rain more than triples the attenuation in that small distance. 

That comparison would change for other bands. 

Rain clutter effects on detection range must be considered, of course, along 

with the attenuation discussed here (see Chapter 9). 

7.3.4 Attenuation in Snow 

Water in frozen form has a much lower attenuation coefficient than rain. Blake 

presents an expression [1, p. 221, Eq. (5.53)] derived from Gunn and East [12, p. 

536] that gives the two-way attenuation, using  in m: 

 

Table 7.4  Pathlengths and Attenuations (X-band) of Typical Rainstorms 

 
Large Region of 

Light Rain 

Small Region of 

Heavy Rain 

Rain area km2 1,400 35 

Maximum rain altitude km 4 5 

Pathlength in rain km 42 7 

Rainfall rate mm/h 1.0 30 

Rain attenuation coefficient dB/km 0.02 1.6 

Rain attenuation dB 0.8 10.7 

Air attenuation coefficient dB/km 0.027 0.027 

Air attenuation dB 3.1 3.1 



252 Radar Equations for Modern Radar 

 

  
1.6

11 5

4
7.4 10 4.4 10  (dB/km)s s
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 (7.29) 

where rs in mm/h is the equivalent liquid water content and  is in m.
6
 Figure 7.25 

shows results of (7.29) for snowfall rates rr = 0.32, 1.0, and 3.2 mm/h, with a 

curves for rain at 1 mm/h for comparison. Rates in excess of 3.2 mm/h are rare, 

but the coefficient increases steeply for melting snow in the narrow layer below 

the level where the air temperature reaches 273K. Above that layer, a temperature 

corrected value to replace the constant 4.4  10
5

 in (7.29) can be derived from 

data in [11]: 

  
0.23 54.4 1.7 273 10 ,   273TsC T T     

 
 (7.30) 

The result is 

    
1.6

0.2311 5

4
7.4 10 10 4.4 1.7 273  (dB/km)s s

s s

r r
k r T 


     
  

 (7.31) 

                                                           
6  Based on a personal communication from East, the factor multiplying rr

1.6 has been increased here 
by 5.6%. 
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Figure 7.25  Attenuation coefficient for dry snow as a function of frequency, compared with light rain 

(dashed curve). 
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The effect of the temperature correction is to reduce the snow attenuation in the 

microwave band in regions where the temperature is significantly below 273K, as 

shown in Figure 7.25. 

7.3.5 Attenuation in Clouds 

Goldstein’s derivation of cloud attenuation [11] remains definitive, confirmed by 

Gunn and East [12]. Both are based on work of Ryde [13, 14] and the classic Mie 

theory on scattering from spherical objects [20]. 

The attenuation of small, spherical water droplets is calculated from the com-

plex dielectric constant c of water, given as a function of wavelength by the De-

bye formula [21]: 

 0

1
c j

  
   






  (7.32) 

where 0, , and  are functions of temperature, plotted in Figure 7.26. The two-

way attenuation coefficient for a cloud is given as a function of the water density 

M in g/m
3
 and c: 

  0.052 Imc

M
k K  


 (7.33) 

where K = (c  1)/(c + 2) is the parameter used in [12]. Figure 7.27 shows the 

normalized attenuation coefficient kc /M as a function of frequency for tempera-

tures T = 273, 293, and 313K.  
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Figure 7.26  Temperature-dependent parameters 0 and  of Debye formula;  = 5.5 for all T. 
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An approximation for Im(K), valid for f < 60 GHz, is 

    
0.80.0011

Im exp 0.067 273 ,   0.005mK T      
 

 (7.34)  

which leads to 
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0.84

2
1.64 10 exp 0.067 273 ,   0.005mc

M
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
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 (7.35) 

Comparing this with Goldstein’s equation [11, p. 676, Eq. (41)], applicable to 

T = 291K, we find: 
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Figure 7.27  Cloud attenuation coefficient kc/M as a function of frequency for three temperatures. 
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This represents a 5% difference in the decibel value of cloud attenuation, which 

lies within the accuracy of temperature and water-content models for clouds. 

7.3.6 Weather Effects on System Noise Temperature 

The sky temperature calculation of Section 6.3.2 considered only the attenuation 

in a clear atmosphere. Any increase in attenuation from precipitation or clouds 

carries with it an increase in system noise temperature. The total noise tempera-

ture is found by adding the one-way weather attenuation coefficient kw1( f0,h) 

from (7.24), (7.29), or (7.35) to that of the troposphere in the integral of (6.21): 

        
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                

 
              
 





 (7.38) 

In many cases a constant physical temperature Tpw applies to the weather, and 

the noise temperature component is expressed approximately by adding to the 

tropospheric temperature a weather component given by 

  1

1
1 1 exp 0.2303w pw pw w w

w

T T T k
L

 
         

 
 (7.39) 

where 

Lw = exp(0.2303kw1w) = loss (as a ratio) due to the weather;  

w = radial depth of the weather region in km.  

For example, a loss kw1w = 1 dB in particles at Tw = 290K contributes  60K to 

the noise temperature. Clear-air attenuation from shorter ranges reduces Tw, while 

the weather attenuation from ranges beyond the weather reduces the clear-air tem-

perature contribution, according to the second integral in (7.38). 

7.4 TROPOSPHERIC LENS LOSS 

Rays leaving the radar antenna are refracted downward in the troposphere, as 

shown in Figure 7.28. A ray leaving the surface at elevation angle 0 arrives at the 

target point (R,ht) for which the true elevation angle is t. The time delay over this 

path exceeds that of a vacuum path by t = (Rd  R)/c, where Rd is given by the 
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ray-tracing formula (7.8). The bending of the ray path is greatest for 0 = 0 and 

decreases monotonically as 0 increases. The result is that energy radiated from 

the surface within an angular extending from 0 to 0 + 0 is distributed over a 

slightly greater angular sector t to t + t at the target, reducing the energy densi-

ty relative to that that predicted for propagation in a vacuum. This effect is de-

scribed by Weil [22], who presents plots of the two-way loss as a function of tar-

get elevation angle and range. 

The loss can be computed in different ways, but a straightforward method is 

to express the one-way lens loss as the derivative of the ray’s final elevation angle 

t with respect to its value 0 as it leaves the antenna: 

  
 

 
0

lens1 0

0 0

,
lim

,

t R h
L

R h
 

 
   

  
 (7.40) 

where 0 is the launching angle from the antenna, 0 is a small increment in that 

angle, and t is the corresponding increment in the true elevation of the ray arri-

val angle at the target range. Since (7.8) cannot be inverted to evaluate the deriva-

tive represented by (7.40), t is obtained using a root-finding algorithm, allowing 

its derivative to be approximated over a small angular difference 0 in the launch 

angle of the ray from the surface. The results are in Figure 7.29 as the two-way 

lens loss Llens2 in decibels. The corresponding lens factor used in (1.25) is  

 lens

lens1

1
F

L
  (7.41) 

These results are in close agreement with the data presented in [22] and [1, p. 192, 

Figure 5.7]. The latter, however, extends in range only to 750 km and losses for 

Rt

ht

t

0

Ray path Target

 
Figure 7.28  Geometry of ray path through troposphere. 
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angles near zero fail to show the continuing increase that reaches its maximum for 

R > 2,000 km. 

The curve for the minimum plotted beam elevation 0.03 in Figure 7.28 de-

parts at long ranges from a smooth curve because of difficulty in the algorithm for 

finding the derivative in (7.40) from ray-tracing expression (7.8) at  < 0.1. 

However, variations normally encountered in the refractive index profile lead to 

variations in lens loss in this region that mask these computational errors. 

The conclusion in [1] that reciprocity is applicable to the lens loss on the re-

turn path of the echo is correct, because the refractive process is linear and is 

equivalent to an increase in the antenna beamwidth, with corresponding loss as the 

rays pass through and beyond the troposphere and return to the radar along the 

same path.  

Lens loss does not result from dissipation of energy in the troposphere, and in 

contrast to other atmospheric losses it does not contribute to the system noise 

temperature. For this reason, it is included in the radar equation as a range-

dependent response factor Flens to keep it separate from the tropospheric absorp-

tion L. 

7.5 IONOSPHERIC EFFECTS 

The ionosphere affects radar range performance in two ways: it introduces Fara-

day rotation of the wave polarization, causing the received polarization to differ 

from that transmitted, and it causes dispersion of different components of the sig-

nal spectrum, broadening the pulse and reducing its amplitude. Both these effects 
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Figure 7.29  Two-way tropospheric lens loss as a function of range for different beam elevations. 
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are variable, depending on the path through the layers of the ionosphere and the 

electron density of these layers. Faraday rotation also depends on the strength and 

direction of the magnetic field with respect to the direction of the ray. 

7.5.1 Geometry of Ray in Ionosphere 

The geometry of the ray path through an ionospheric layer is shown in Figure 

7.30. The ray leaves the Earth’s surface at elevation angle , enters the layer at 

altitude h1 and exits at h2. The maximum electron density of the layer occurs at 

altitude hm, where the ray elevation angle relative to the local horizontal is . The 

pathlength through the layer is R, given by 

  2 1 secR h h      (7.42) 

The Earth’s magnetic field H is directed at some angle relative to the local hori-

zontal, differing by  from the ray direction.  

7.5.2 Ionospheric Structure 

The daytime ionosphere consists of three layers, known as the E, F1, and F2 layers 

(a lower, weak D layer is of no importance in radar operation). At night, the E 

layer disappears and the F1 and F2 layers merge into a single F layer. The electron 

density Ne of the ionosphere was described in 1927 by Sydney Chapman, and his 

equations have been used by Millman [23] to derive the effects on radar transmis-

sions:  

  
1

exp 1 exp
2

e mN N Z Z
 

     
 

 (7.43) 
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Figure 7.30  Geometry of ray path through an ionospheric layer. 
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where 

Nm  =  maximum electron density in electrons/m
3
; 

Z  =  (h  hm)/h0 = normalized altitude; 

h  =  altitude in m; 

hm  =  altitude of maximum density in m; 

h0  =  scale altitude in m. 

Values of Nm, hm, and h0 for typical day and night conditions are shown in Table 

7.5, and the total density is shown in Figure 7.31 as a function of altitude.
7
 

Table 7.5  Chapman Parameters of Ionospheric Layers 

Layer Nm (m3) hm (km) h0 (km) 

Daytime E 1.5  1011 100 10 

Daytime F1 3.0  1011 200 40 

Daytime F2 1.25  1012 300 50 

Nighttime E 8  109 120 10 

Nighttime F 4  1011 300 45 

                                                           
7  Much of the literature expresses electron densities per cm3 and altitude in cm; to avoid conversion 

errors in computation of many ionospheric effects, densities per m3 and altitudes in m are used here. 
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Figure 7.31  Typical ionospheric electron densities Ne: daytime (solid line), nighttime (dashed line). 
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The electron densities vary upwards and downwards by factors up to about two, 

depending on solar condition and latitude, but the values shown in Figure 7.30 can 

be used to calculate typical effects on radar signals.  

7.5.3 Total Electron Count 

The effects of the ionosphere on the radar signal are proportional to the total elec-

tron count Nt in a column having a cross section of one cm
2
 extending from the 

radar to the target: 

   2

0

,  (electrons/m )t eN F h N dh



   (7.44) 

where 
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2 2
,

cos

e

e e

a h
F h

a h a


 

  

 (7.45) 

where ae is the radius of the Earth in m. The function F is the cosecant of the local 

elevation angle of the beam at altitude h. It describes the ratio of the pathlength 

through each altitude element dh at local ray elevation  to the thickness of that 

element, allows integration with respect to altitude rather than range. Integration 

of (7.44) to an altitude of 10
6
 m is sufficient to capture the effect of the iono-

sphere, since the electron density above that altitude is low enough to be neglect-

ed. 

The total electron count is shown as a function of target altitude in Figure 

7.32 for typical daytime and nighttime conditions. Signals from targets below 100 

km will experience negligible ionospheric effects, as will be shown when Faraday 

rotation and dispersion effects are calculated in the following sections. 

7.5.4 Faraday Rotation 

Millman gives the equation for Faraday rotation (h) experienced on a two-way 

path between the radar and a target [24, p. 362, Eq. (1-138)]: 

        
2

1

3

2 2 2
cos    (rad)

h

e

h

e
h F h H h N h dh

m c f
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   (7.46) 

where 

e  =  4.8  10
10

 = electron charge in esu; 
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m  =  9.1  10
28

 = electron mass in g; 

c  =  3  10
10

 = velocity of light in cm/s; 

f  =  frequency in Hz; 

F(h)  = factor defined by (7.45); 

H  = Earth’s magnetic field in gauss; 

  =  angle between the ray and the magnetic field; 

Ne(h)  =  electron density per cm
3
; 

h1, h2  =  altitude limits in cm of significant electron density; 

h  =  altitude in cm. 

The magnetic field varies with altitude as 

  
3

0

e

e

a
H h H

a h

 
  

 
 (7.47) 

where H0  0.65 gauss is the sea-level value at latitudes of greatest interest. The 

constant in (7.46) becomes 4.73 when h is expressed in m, c in m/s, and Ne in 

electrons per m
3
. Although the angle  varies with the direction in which the radar 

view the target, the maximum Faraday rotation angle can be found for  = 0, for 

which (7.46) can be written as 
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Figure 7.32  Typical total electron counts for daytime and nighttime ionosphere at elevation angles 0 

and 90. 
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The Faraday rotation angles max(h) for f = 100 MHz under typical daytime 

and nighttime conditions at 0 and 90 elevation are shown as a function of target 

altitude in Figure 7.33. For altitudes above 600 km the Faraday rotation is shown 

in Figure 7.34 as a function of frequency. The average loss as polarization varies 

from zero to the maximum for a radar using linear polarization is given by 
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   (7.49) 

and this loss is shown in Figure 7.35 as a function of frequency for a target at 

h = 300 km. The loss is 3 dB when averaged over more than 20 rotations, and os-

cillates as that number decreases, peaking near 4 dB when averaged between 0 
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Figure 7.33  Typical Faraday rotation angles for daytime (solid lines) and nighttime (dashed lines) at 

0 and 90 elevation angles, as a function of altitude, for f = 100 MHz. 
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and 130 of rotation. As the maximum rotation is further reduced, the loss is re-

duced, approaching 0 dB for maximum rotation less than 20. 

For the daytime ionosphere at zero elevation, Figure 7.34 indicates that the 

rotation angle is less than 20 for f  3GHz. It is necessary at L-band (1.3 GHz) 

and below to allow for Faraday rotation in applying the radar equation to targets 

above about 250-km altitude. The loss may be eliminated by using circular polari-
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Figure 7.34  Typical Faraday rotation angles for daytime (solid lines) and nighttime (dashed lines) 

ionosphere at 0 and 90 elevation angles, as a function of frequency, for h  600 km. 
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Figure 7.35  Faraday rotation loss as a function of frequency. 
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zation, where rotation merely changes the phase of the received signal. If linear 

polarization is used for transmission, a dual-polarized receiving antenna may be 

used, the two linear polarizations being combined either adaptively, to follow the 

rotated signal polarization, or by noncoherently summing outputs of a two-

channel receiver, incurring a small integration loss.  

Because the Faraday rotation angle cannot be predicted accurately its effect 

on detection probability must be treated as a statistical quantity and the corre-

sponding loss (Figure 10.5) evaluated as a function of Pd, as discussed in Section 

10.2.1. 

7.5.5 Dispersion Across Signal Spectrum 

7.5.5.1 Refractivity in the Ionosphere 

A second source of ionospheric loss in the radar equation results from dispersion 

across the signal spectrum, causing distortion of the received pulse. The refractivi-

ty Ni of the ionosphere is a function of the electron density: 
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 (7.50) 

where  

f0  =  carrier frequency in Hz;  

Ne(h)  =  electron density per m
3
; 

h  =  altitude. 

7.5.5.2 Time Delay through the Ionosphere 

The time delay of the echo signal from a target exceeds the value for empty space 

above the troposphere by t, which varies with frequency, for given total electron 

count Nt: 
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where 

Nt =  total electron count per m
2
 given by (7.44); 

c  =  velocity of light in m/s. 

The delay is positive because the group velocity in the ionosphere is vg = nic. The 

delay in microseconds is shown in Figure 5.36 as a function of the ratio Nt/f0
2

 

where f is in Hz. 

For example, a signal at carrier frequency f0 = 100 MHz, echoed from a target 

beyond the typical daytime ionosphere at zero elevation with Nt = 10
18

/m
2
, returns 

to the radar with 28 s extra delay, corresponding to a range 4.2 km beyond the 

actual target. 

The extra range is not significant in using the radar equation, but in the pro-

cess of passing through the ionosphere the different frequencies in the pulse spec-

trum experience a differential delay. Letting f0 be the carrier frequency, and f the 

offset from that frequency of a spectral component of the waveform, we can ex-

press the differential delay t as: 

Nt / in (m-Hz)f0
2 2 

D
e

la
y 

in
 

s


Example:  = 10  Nt

18

1 10 100 1 10
30.1

1

10

100

1 10
3

.

f  0 = 100 z = 10  HzMH
8

 

Figure 7.36  Ionospheric time delay in s as a function of the ratio Nt/f0
2, for Nt in m2, f0 in Hz. 
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where 

t = differential time delay in s; 

f = frequency offset in Hz from carrier frequency f0. 

The first-order term for differential delay is thus proportional to the delay t of the 

carrier-frequency f0 multiplied by the frequency deviation as a fraction of the car-

rier. In the previous example of the pulse at f0 = 100 MHz, the delay at the carrier 

frequency was t = 28 s. For a waveform with spectral width B = 1 MHz, in this 

ionosphere, the extreme spectral components separated by 0.5 MHz from the 

carrier would have delays differing by 0.01 0.28 st t      from that of the 

central component of the spectrum. At f0 = 100 MHz, this corresponds to shifts of 

28 cycles = 176 rad  in phase across the signal spectrum. 

7.5.5.3 Effect of Ionosphere on Received Pulse 

The result of spectral dispersion is a differential phase shift  across the echo 

signal spectrum, given for f and f0 in Hz by 
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The signal spectrum is normally described by a function A( f ), where f denotes 

frequency relative to the carrier at f0. The received signal spectrum is then 
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 (7.54) 

where 0 = 2( f0 + f )t is the phase delay of the carrier. The unit term in square 

brackets corresponds to the phase of the carrier, the second to the dispersive effect 

across the signal bandwidth. 
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Assuming a filter response H( f), we can write the expression for the output 

waveform on a target with free-space delay td as 

        exp 2d r dt A f H f j f t df





     (7.55) 

In the absence of the ionosphere (td) would be the output waveform of the 

matched filter.  

The effects of dispersion on the received waveform are shown in Figure 7.37, 

as calculated for carrier frequencies that give the indicated products of differential 

delay and bandwidth over a path with total electron count 3  10
17

 per m
2
. In Fig-

ure 7.38 the excess carrier time delay t has been removed to align the waveforms, 

to compare the effects on pulse shape and amplitude. The transmitted pulse as-

sumed for these plots is rectangular with width  = 0.1 s, such that the noise 

bandwidth of the transmission and the matched-filter is Bn = 10 MHz. As the car-

rier frequency is reduced toward 145 MHz from 10 GHz, where the ionospheric 

delay is negligible (t = 0), the delay increases to 4 s, the differential delay time 

increases to t = 0.5 s = 5/B, the pulse broadens to  0.5 s, and its amplitude 

decreases  to less than half its original voltage. 
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Figure 7.37  Waveforms of rectangular 0.1 s pulse passed through ionosphere and a filter matched to 

the transmitted waveform (Bn = 1).  
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Since the filter response cannot be adjusted to compensate for phase shift 

over the signal bandwidth, there is a loss in signal amplitude, shown in Figure 

7.39. This loss is discussed by Brookner [25], who illustrates the broadening and 

loss on Gaussian pulses. His curves show, for example, that the “available band-

width” for propagation at low elevation angle through a severe daytime iono-

sphere is limited to about 1 MHz at f0 = 100 MHz, consistent with the curve for 

tBn = 0.5 in Figure 7.37 and the loss of 1.3 dB shown in Figure 7.38. 
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Figure 7.38  Detail of waveforms from Figure 7.37 with time delay removed. Figure 7.39
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Figure 7.39  Ionospheric dispersion loss as a function of tBn. 
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For pulse compression and other waveforms, the appropriate transmitted 

spectrum A( f) of the transmitted signal and its matched filter H( f ) may be entered 

into (7.55) to obtain the waveform of the received echo. The loss, when expressed 

as a function of the product tBn should follow a curve close to that of Figure 7.37. 

7.6 SUMMARY OF ATMOSPHERIC EFFECTS 

Tropospheric refraction is the cause of errors in measurement of target position, 

but the radar equation is not affected by those problems. It is affected, however, 

by the fact that the ray paths through the troposphere lie above the direct geomet-

ric line to the target, which reduces the density, and hence the attenuation, along 

the path. Hence, calculations of attenuation must be carried out with the appropri-

ate ray-tracing model for the troposphere. 

The attenuation coefficients of atmospheric gases can be found from theory 

developed during World War II by J. H. Van Vleck, and extended subsequently to 

cover the millimeter-wave region. Blake [1] gave the necessary equations and 

plotted the results. The same results are plotted here as a function of range in kil-

ometers. An alternative to his procedure for adjusting to moisture content is pre-

sented that holds accuracies within the limits set by uncertainties in atmospheric 

models. 

Precipitation and clouds add to attenuation of the clear air, and the model 

used by Blake is extended here to include temperature effects. The normal varia-

tions in temperature can change the attenuation coefficient of rain, expressed in 

dB/km, over the 3:1 range represented by factors between 1.8 and 0.6 relative to 

the values at 291K that are often cited. The literature on this effect is far from uni-

fied, but an approximate model is developed here to estimate this correction.  

To describe radar performance when weather is present, the effect of its at-

tenuation on the sky temperature is expressed here by an addition to the integral 

presented in Chapter 6 that gives the conventional clear-air sky temperature. This 

correction becomes increasingly important as receiver noise temperatures are re-

duced to near or below the temperature of the clear sky. 

The effect of the ionosphere on the radar equation is important for radars op-

erating below S-band on targets in or beyond the F layer. Faraday rotation of the 

echo signal polarization causes a loss when other than circular polarization is 

used. There is also a dispersion limit on signal bandwidth that can be supported by 

transmission paths through the ionosphere, and the echo signal power is reduced 

steeply as the bandwidth exceeds the reciprocal of the differential delay across the 

spectrum. 
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Ionospheric effects are especially important in VHF and UHF radars when 

they are used for detection and tracking of ballistic missiles, but must be consid-

ered in those applications even for L-band radars. 
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CHAPTER 8 

The Pattern-Propagation Factor 

Chapter 1 derived the radar equation for free-space detection range, and noted the 

importance of including the pattern-propagation factors Ft and Fr that describe the 

effects of the transmitting and receiving antenna patterns in elevation and interac-

tion with the Earth’s surface. This chapter considers those factors in detail, includ-

ing both reflections from the surface and diffraction on paths that graze the sur-

face. For brevity, we will use the term F-factor. 

The original radar equation [1, Eq. (31)] included the F-factor, which had 

been developed during World War II and defined in [2, p. 35] as 

the ratio of the amplitude of the electric field at a given point under specified conditions to the 

amplitude of the electric field under free-space conditions with the beam of the transmitter di-
rected toward the point in question. 

Radar equations for modern radar must include this factor unless the radar beam is 

elevated well above the surface and has negligible sidelobes that illuminate the 

surface. There are four regions in which the F-factor varies differently with range: 

 Near region, where a clear path exists and F  1; 

 Interference region, where surface reflections interfere with the direct ray; 

 Intermediate region, where both interference and diffraction are applicable; 

 Diffraction region, where diffraction is dominant. 

Blake [3, Chapter 6] described multipath (surface-reflection) effects on prop-

agation, and extended the discussion to a simple model of smooth-sphere diffrac-

tion. We will follow Blake’s methods, which present several levels of complexity 

and accuracy of modeling the F-factor, discuss the errors that result from simplifi-

cations and imperfect knowledge of the several parameters involved, and extend 

the discussion to knife-edge diffraction, which may modify the results obtained 

from the smooth-sphere model. 
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8.1 F-FACTOR IN THE INTERFERENCE REGION 

8.1.1 Derivation of the Interference F-Factor 

The free-space field of the direct transmitted wave at range R and elevation t, 

with the antenna beam axis at elevation b, is 

    0

2
exp  V/md t b

R
E f E j

 
    

 
 (8.1) 

where f () is the voltage pattern of the antenna, 0 30 t tE PG R  is the magni-

tude of the field on the beam axis, Pt is the transmitted power in W, Gt is the 

transmitting antenna gain, R is in m,  is the wavelength in m, and f () is the ele-

vation voltage pattern of the antenna, normalized to unity on the axis at which Gt 

is calculated. 

The field of a wave reflected from the surface at angle  below the axis is 
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 (8.2) 

where  is the complex surface reflection coefficient, Rr is the pathlength of the 

reflected ray and  is the grazing angle at the reflection point. The difference be-

tween the reflection and direct paths is 

   (m)rR R    (8.3) 

It is normally assumed that /R << 1, Rr /R  1, giving [3, p. 241, Eq. (6.2)]: 

    0 exp   (V/m)r bE f E j      (8.4) 

where  is the magnitude of  and  is the phase angle of the reflection relative to 

the direct ray: 

 
0

2
  (rad)


     


 (8.5) 

Here  is the phase angle of  and  is the extra pathlength of the reflected ray.  
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The magnitude of the vector sum of the direct and reflected rays is [3, p. 241, 

Eq. (6.3)]: 

      0 exp   (V/m)d r t b bE E E E f f j            (8.6) 

The F-factor resulting from constructive and destructive interference by a reflect-

ed signal is then defined as [3, p. 241, Eq. (6.4)]: 

      expi t b bF f f j        (8.7) 

where the subscript i identifies the factor as resulting from the interference phe-

nomenon. Absolute values are used for Fi because the phase of the resultant field 

does not affect the results of the radar equation.  

When a common antenna is used for transmission and reception, the same 

function f applies to the outgoing and incoming paths, resulting in a single F-

factor. In other cases, separate Fit and Fir are calculated, and 

 i it irF F F  (8.8) 

Blake noted that the difference in antenna pattern phase angles may be in-

cluded in , permitting (8.7) to be written such that all terms are real except the 

phase angle : 

 

 
 

 
 

  2

1 exp

1 2 cos

b

i t b

t b

t b

f
F f j

f

f x x

 
     

 

     

 (8.9) 

where 
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The calculation requires knowledge of the antenna elevation patterns for transmit-

ting and receiving, the pathlength difference , and the complex surface reflection 

coefficient . Those parameters are discussed in subsequent sections of this chap-

ter. Most conventional radars use a common antenna for which a single calcula-

tion of F is sufficient. In phased array radars, the transmitting and receiving pat-

terns often differ even when the are generated by a common array, requiring sepa-

rate calculations for Fit and Fir. 
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8.1.2 Application of the F-Factor 

The F-factor is applied in the Blake chart (Figure 1.1 or 1.2) as an adjustment to 

the free-space range R0 to obtain R = R0Fi. This is followed by application of a 

factor for atmospheric attenuation based on the range R. The iterative process in 

steps 9–13 of the chart leads to an accurate result for any specified target elevation 

angle. A range-height-angle (coverage) plot may then be prepared by scaling 

range to the F-factor, with adjustments as needed for variation of attenuation with 

elevation angle and range. 

At elevation angles t << 1,   2hr sin t, and for a horizontally polarized ra-

dar the reflection coefficient (see Section 8.3) is   1.00, leading to 
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For this case, (8.9) becomes 

    
4 2

2 2cos 2 sinr t r t

i t b t b

h h
F f f

    
        

  
 (8.11) 

Nulls and peaks appear in the resulting coverage pattern at elevation angles given 

by  
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where i = 1 corresponds to the null at the horizon and to the first reflection lobe. 

As an example, consider a horizontally polarized S-band radar with elevation 

beamwidth e = 6, operating at height hr = 10m over a sea surface. The axis of 

the elevation beam is normally set to b  e/3 above the horizon. The lower lobes 

of the F-factor, shown in Figure 8.1, are approximately sinusoidal, as predicted by 

(8.11). When applied to the radar equation this results in a range at the center of 
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the lowest lobe that is approximately twice the free-space range for that elevation 

angle. For zero axis tilt, f () = 1 at the horizon, and the first lobe would have am-

plitude Fi = 2.0, rather than the somewhat lower value shown in the figure. If the 

elevation angle scale is converted to target altitude at a given range, the plot will 

show the height-gain factor for the radar-target path.  

Computer methods of solving for detection range are based on calculating the 

received and required signal energies as functions of range and identifying the 

longest range at which the requirement is met. Range-dependent parameters in the 

radar equation, including atmospheric attenuation and F-factor, are determined for 

each range, based on the assumed target trajectory. If that trajectory maintains a 

constant elevation from the radar, repeated calculations of the F-factor may be 

unnecessary as long as the resulting detection range remains large enough to give 

a constant pathlength difference  (see Section 8.2).  

8.2 GEOMETRICAL MODELS OF THE RAY PATHS 

A model of radar and target location over the Earth’s surface is needed to find the 

pathlength difference  and the grazing angle  for which the reflection coeffi-
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Figure 8.1  Interference pattern-propagation factor for a typical search radar over a sea surface (solid 

line), with antenna voltage pattern f (t) (dashed line) and f (r) (dot-dash line). 
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cient is to be calculated. Depending on the target ranges of interest and the accu-

racy required of the calculation, there are several modeling methods that may be 

used, starting with a distant target over a flat Earth, proceeding to targets at arbi-

trary range, and then to spherical-Earth models of increasing complexity. 

8.2.1 Method 1: Flat-Earth Approximation with Distant Target 

The geometry is shown in Figure 8.2. For this simple model, the input parameters 

are the radar wavelength , antenna height hr above the surface, and target eleva-

tion t.  

The reflected ray, arriving at the radar site parallel to the direct ray, can be 

considered as passing in a straight line through the surface at the point of specular 

reflection to an image antenna located hr below the surface. The grazing angle  

of that ray relative to the surface is equal to the elevation t and the pathlength 

difference is 

 
1 2 sin   (m)r th    (8.14) 

The altitude of a target at range R above the flat Earth is 

 1 sin   (m)t r th h R    (8.15) 

and the pathlength difference is 

 1

1

2
  (m)r th h

R
   (8.16) 

Antenna

Image 
antenna

t

hr

hr

1

  = t

From distant
 target

 

Figure 8.2  Geometry of distant target over flat Earth, with arrows drawn for the receiving case. 
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The following parameters will be assumed in comparing this approximation 

with others and with exact methods to be described in subsequent sections: 

  hr = 10m,  = 0.1m, and t = 2.  

This is the case used as an example in Figure 8.1. At 2 elevation, the phase rever-

sal introduced by the reflection coefficient shifts the reflected ray by  radians, 

relative to the direct ray, causing a deep null to appear near that elevation. 

8.2.2 Method 2: Flat-Earth Approximation with Target at Arbitrary 

Range 

Relaxing the assumption that the target is at range long enough that the rays can 

be considered parallel on arrival at the radar site, the geometry is as shown in Fig-

ure 8.3. The target is at range R and elevation t, and in rectangular coordinates it 

is characterized by altitude ht1 and ground range G: 
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 (8.17) 

The reflected ray arrives at and is reflected from the flat surface at a grazing 

angle  exceeding the elevation angle of the target: 
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Figure 8.3  Geometry of target at arbitrary range over flat Earth. 
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 1 1sin   (rad)t rh h

R

 
   (8.18) 

The reflected pathlength is the sum of two segments, Rr = R1 + R2, where R2 is 

the distance from the reflection point to the antenna and also to the image antenna: 

  
22 2

1 14r t r t rR G h h R h h      (8.19) 

The pathlength difference is 
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 (8.20) 

Expanding the radical for 21/R << 1 and retaining the second-order term, we find 
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 (8.21) 

where 1 is the result of the distant-target approximation (8.16). The reduction in 

the pathlength difference by inclusion of the second-order term in (8.21) is about 

one part in 10
5
 at 2 elevation, but can be significant at higher elevation angles. 

The F-factor plot for this case is indistinguishable from Figure 8.1. 

Blake [3, p. 245, Eqs. (6.17)–(6.19)] uses an approximation that results in  

 1 1
2

  (m)
cos

r t

t

h h

G


  


 (8.22) 

The pathlength predicted by this approximation is in error by 6 parts in 10
4
 at 2.  

8.2.3 Method 3: First-Order Approximation for Spherical Earth  

A simple, first-order correction for the spherical Earth with effective radius keae 

uses the target altitude ht1 above a plane tangent to the Earth’s surface at the radar 

site, as shown in Figure 8.4.  

The surface at the target range lies below the tangent plane by  
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where keae is the effective Earth’s radius. Here and subsequently, the constant ke  

4/3 appears along with the actual radius ae, making the results dependent on the 

tropospheric refractivity gradient (see Section 7.1.4). As the target altitude in-

creases, this method of modeling the effects of tropospheric refraction becomes 

less accurate, resulting in errors in the geometric models discussed. However, the 

results may still be used to compare the relative accuracies of different methods, 

keeping in mind that the error in refractive modeling may exceed that of geomet-

ric approximations. Blake developed a method of using the exponential reference 

atmosphere to relate R, ht, and t, but found it unnecessary to apply this to calcula-

tion of the F-factor, basing it instead on the effective radius keae. 

The target altitude above the tangent plane is 
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2

t t h t

e e

G
h h h

k a
     (8.24) 

It is assumed in this method that the reflection point is close enough to the radar 

that it can be modeled as lying on a plane tangent to the surface at the radar. This 

allows the grazing angle  to be calculated by substitution of ht1 for ht in (8.18): 
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hr
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R2
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Figure 8.4  First-order correction for spherical Earth. 
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 1 1sin   (rad)t rh h

R

 
   (8.25) 

The target elevation angle is reduced to 

 1 1sin   (rad)t r

t

h h

R

 
   (8.26) 

Substituting ht1 in (8.16) gives the pathlength difference 1. Analogous to (8.20), 

we find 
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 (8.27) 

8.2.4 Method 4: Approximation for Spherical Earth with Distant Target 

Blake [3, pp. 249–253] develops expressions for the pathlength difference and 

grazing angle when a distant target is observed at elevation angle t over the 

spherical Earth. The geometry is shown in Figure 8.5.  
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Figure 8.5  Geometry of distant target over spherical Earth. 
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Blake gives the Earth-center angle subtended by the ground range to the re-

flection point as [3, p. 252, Eq. (6.40)]: 
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tan 3 2 3 tan 3

r e e
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 (8.28) 

The ground range and grazing angle are: 

 
1   (m)e eG k a   (8.29) 

   (rad)t      (8.30) 

The pathlength difference is 

 
4 2 1   (m)R R    (8.31) 

where the range segments are 

  1 2 cos 2 2   (m)tR R     (8.32) 

  2 2

2   (m)r e e e e rR h k a k a h     (8.33) 

The result is [3, p. 252, Eqs. (6.44), (6.45)]: 

      2 2 2 2

4 22 sin 2 sin   (m)t r e e e e r tR h k a k a h             (8.34) 

Method 4, not requiring target altitude or range as inputs, is insensitive to the posi-

tion of the target along the line of constant elevation.  

8.2.5 Method 5: Approximation for Spherical Earth with Target at 

Arbitrary Range 

The geometry for general case is shown in Figure 8.6. Fishback, in [2, p. 113] 

presents the solution of the cubic equation that yields the pathlengths and grazing 

angle based on knowledge of the altitudes ht and hr and the ground rage G = G1 

+G2. For this purpose, two intermediate parameters are defined: 
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Using these parameters, and assuming that the grazing angle is small, the ground 

range to the reflection point is
1
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The altitudes referred to a plane tangent to the surface at the reflection point are 

then 
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1  A typographical error in [2, p. 113] shows a + sign rather than  for the second term in our (8.37). 
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Figure 8.6  Geometry of target at arbitrary range over spherical Earth. 
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The approximations for pathlength difference, grazing angle, and target elevation 

angle are: 
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If the slant range R is given, the ground range G is found from Blake’s ex-

pression [3, p. 256, Eqs. (6.57), (6.58)]: 
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where the approximation is accurate to one part in 10
4
 for practical radar cases. 

8.2.6 Method 6: Exact Expressions for Spherical Earth with Target at  

Arbitrary Range 

Blake presents a method that avoids the restriction  << 1. Fishback’s solution to 

the cubic equation is used, and the first ground-range segment G1 is found from 

(8.37). Using G1 and other known parameters, the two segments of the reflected 

path are 
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where G2 = G  G1. If the ground range G is given rather than R, the latter may be 

found as 
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The pathlength difference is 

 
6 1 2   (m)R R R     (8.46) 

The angles t and  are: 

 

 

 

2 2 2

1

1

2
sin

2

sin   (rad)
2

e e t r t r

t

e e r

t r

e e

k a h h h h R

k a h R

h h R

R k a





   
 



 
  

 

 (8.47) 

 
 

2 2

1 1

1

2
sin   (rad)

2

e e r r

e e r

k a h h R

k a h R

  
 


 (8.48) 

8.2.7 Comparison of Approximate Methods 

The results of the six methods are compared in Table 8.1, where all values are 

calculated for an elevation angle t = 2. Two antenna altitudes and two ranges are 

considered. The variation among results is negligible for the low-sited radar (hr = 

10m), except that the Fishback solution for the spherical Earth gives a lower ele-

vation when the same target altitude is used as in the more approximate methods. 

Over typical land surfaces, there is likely to be some variation in the surface 

which, along with uncertainty in the refractivity profile, will mask any difference 

in the geometrical model. 

At the higher antenna altitude (hr = 100m), Method 1 fails to capture the di-

vergence of grazing angle from target elevation, which is  0.1 in these exam-

ples. It also underestimates the pathlength difference, as does the distant-target 

approximation. 

The Fishback method and Blake’s modification are not excessively burden-

some for today’s computers, and may be included in programs for solution of the 

radar equation. For surface-based radars at other than high altitudes, any of the 

approximate methods may be used without introducing large errors in the grazing 

angle and pathlength difference. 
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8.3 REFLECTION COEFFICIENT 

Having determined the angles required to express f (t) and f (r) of (8.9), the 

pathlength difference that determines  in that equation, and the grazing angle  

at the surface, the next step is to calculate the magnitude  and phase  of the sur-

face reflection coefficient. The magnitude is the product of three terms: 

 
0 s v      (8.49) 

where  

0  = || = magnitude of the Fresnel reflection coefficient; 

s  =  specular scattering coefficient; 

v  = vegetation factor for land surfaces. 

Table 8.1 

Inputs 
Method 

Outputs 

ha m R km ht m    m  rad 

10 

Any 1. Flat Earth, distant target  2.00 0.698 43.86 

100 

2. Flat Earth, arbitrary range 3,500 2.01 0.700 43.98 

3. Spherical Earth, 1st-order 3,500 2.01 0.700 43.98 

4. Spherical Earth, distant target 3,500 2.00 0.699 43.89 

5. Spherical Earth, Fishback 4,084 2.01 0.701 44.01 

6. Spherical Earth, Blake 4,088 2.01 0.701 44.01 

Any 1. Flat Earth, distant target  2.00 0.698 43.86 

20 

2. Flat Earth, arbitrary range 708 2.06 0.708 44.48 

3. Spherical Earth, 1st-order 708 2.06 0.708 44.48 

4. Spherical Earth, distant target 708 2.00 0.699 43.89 

5. Spherical Earth, Fishback 731 2.06 0.708 44.51 

6. Spherical Earth, Blake 732 2.06 0.708 44.51 

100 

Any 1. Flat Earth, distant target  2.00 6.98 438.56 

100 

2. Flat Earth, arbitrary range 3,590 2.11 7.18 451.12 

3. Spherical Earth, 1st-order 3,590 2.11 7.18 451.12 

4. Spherical Earth, distant target 3,500 2.02 7.02 440.83 

5. Spherical Earth, Fishback 4,174 2.13 7.21 453.21 

6. Spherical Earth, Blake 4,177 2.13 7.21 453.09 
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8.3.1 Fresnel Reflection Coefficient 

The Fresnel reflection coefficient  describes the ratio of the field reflected from a 

smooth surface to that incident on it. Values are different for horizontal and verti-

cal polarizations:  
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where 

h  =  coefficient for horizontal polarization; 

v  =  coefficient for vertical polarization; 

  =  grazing angle; 

  =  r +ji = complex dielectric constant of the surface material; 

r  =  relative dielectric constant.  

The imaginary component of the dielectric constant is 

 60i ej     (8.52) 

where 

  =  wavelength in m; 

e  =  conductivity in siemens/m. 

For sea water, of greatest concern in naval and marine radar, Blake used data 

from an early paper [4], which gave the following expressions for the real and 

imaginary parts of the dielectric constant [3, p. 260, Eqs. (6.70), (6.71)]: 
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 (8.53) 

where 

x  =  2f; 

  =  relaxation constant = 12.1  10
12

 at T = 10C, or 9.2  10
12

 at 

T = 20C; 

s  =  static dielectric constant = 72.2 at T = 10C, or 69.1 at T = 20C; 
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0  =  4.9; 

i  =  ionic conductivity = 3.6  10
10

 at T = 10C, or 4.7  10
10

 at 

T = 20C; 

f  =  frequency in Hz. 

These expressions give the values for salt water shown as a function of frequency 

in Figure 8.7. 

The resulting reflection coefficients are plotted in Figures 8.8. and 8.9, for 

different surfaces at X-band and at VHF as listed in Table 8.2, where data for 

fresh water and land surfaces have been added. Data on land surfaces were taken 

from [5]. The curves for salt water in the microwave band follow those for fresh 

water, but diverge as wavelengths increase.  

Coefficients for snow and ice, not plotted, are essentially the same as for poor 

soil. 
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Figure 8.7  Components of dielectric constant for salt water: T = 10C (solid lines); T = 20C (dashed 

lines). 

Table 8.2  Electrical Properties of Typical Surfaces 

 r e (siemens/m) 

Material ( = 0.03m) ( = 1m). ( = 0.03m) ( = 1m) 

Fresh water  81 65 0.7 15 

Salt water 48 72 22 4 

Good soil (wet) 13 15 3 0.05 

Average soil 7 8 1 0.02 

Poor soil (dry) 3.5 4 0.3 0.005 

Snow, ice 3 3 0.001 0.001 
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(a) Magnitude 0v of reflection coefficient 
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(b) Phase v of reflection coefficient 

Figure 8.8  Magnitude and phase of reflection coefficient for vertical polarization. 
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For vertical polarization the magnitude 0v drops to a minimum at the pseudo-

Brewster angle B, where the phase passes through 90 while going from near 

180 to 0. An approximate expression for this angle is  
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(b) Phase h of reflection coefficient 

Figure 8.9  Magnitude and phase of reflection coefficient for horizontal polarization. 
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That approximation breaks down for salt water at long wavelengths, but gives 

a good estimate for the other cases illustrated. For horizontal polarization the 

magnitude 0h remains near unity for grazing angles below about 10, and the 

phase angle remains near 180 at all grazing angles. It is for this case that the ap-

proximation (8.11) for the F-factor applies. 

The reflection coefficient for circular polarization is discussed by Blake [3, p. 

264]. Defining the reflection coefficient for the same sense of circular polarization 

as the direct ray as cs, this is given by 

  
1

2
cs v h     (8.55) 

while for the opposite sense os it is 

  
1

2
os v h     (8.56) 

8.3.2 Reflection from Rough Surfaces 

The magnitude of the surface reflection coefficient is equal to the Fresnel coeffi-

cient for smooth surfaces, but for rough surfaces is reduced by a specular scatter-

ing coefficient [6, p. 316]: 
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 (8.57) 

where h is the rms height deviation of the surface relative to its mean. The value 

of h to be used is that within the first Fresnel zone that surrounds the point of 

specular reflection at ground range G1 from the antenna (see Figure 8.5). That 

zone is defined as the elliptical surface area from which the delay of the reflected 

ray deviates by < /2 from that at the specular point [2, pp. 412–418]. 

The Rayleigh roughness criterion is commonly used to describe the height hs 

of surface irregularities below which the surface can be considered “smooth”: 

 
8sin

sh





 (8.58) 

Letting h = hs /2 gives  
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The fraction of power in the specular reflection is s
2
 = 0.54 when the Rayleigh 

criterion is met, using the 2 value for hs. Other scaling of h to h gives slightly 

different results, but that used here gives a reasonable physical interpretation, and 

(8.57), based on a Gaussian distribution of height deviations, is commonly used. 

The grazing angle  is found from the geometrical models of Section 8.2. 

Blake comments on the departure of some experimental data on s in [7] from 

the value given by (8.57), at larger values of the normalized roughness 

x = (h / )sin, where s  0. There are several possible explanations of this, but 

in the development of the theory of multipath tracking errors [8] it was found that 

the experiment described in [7], conducted on a path between oil platforms in the 

Gulf of Mexico, was limited to a constant, small value of grazing angle , and 

achieved high values of (h / )sin only as a result of large wave heights. This 

introduced shadowing of the wave troughs, which in turn reduced the h of the 

visible reflecting surfaces [8, p. 516, Eq. (11.2.6)]: 

 5
0 02  ,  for 2 1h h

         (8.59) 

where 0 is 1.4 times the rms slope of the wave surfaces. The experimental data 

match (8.57) more closely when the corrected value h is used for high sea states. 

Energy reaching the surface is divided among three components: 

2

01   = fraction of energy absorbed by the surface; 

2 2

0 s    = fraction of energy in specular component of reflection; 

2 2

0 d    = fraction of energy in diffuse component of reflection. 

where d is the diffuse reflection coefficient. Conservation of energy requires that 

the sum of these three components be unity, or  

 2 2 1s d    

The plot of the specular and diffuse scattering coefficients as a function of the 

normalized roughness (h / )sin is shown in Figure 8.10. 

Experimental values of d reported in [7] did not exceed 0.4. This was partly 

the result of failure to correct for shadowing at high sea states, but also because 

most of the diffuse energy between low-altitude terminals tends to be reflected 

from surface areas near the two ends of a path. In the experiment, almost half the 
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total diffuse energy arrived at negative elevation angles on the lower skirts or be-

low the mainlobe of the antenna, reducing the measured d. That situation applies 

also in many radar applications, limiting the diffuse energy actually received by 

the antenna. Procedures outlined in [8, pp. pp. 519–520] give the elevation density 

d of diffuse energy and the fraction of (0d)
2
 that is received by the antenna 

power gain pattern. 

As noted by Blake [3, p. 268], the diffuse reflections introduce or increase 

random fluctuations in the target echo, adding to the direct power while reducing 

the strength of the lobing caused by the specular component.  

When the diffuse reflection are strong, the expression for the F-factor may be 

modified to include that term: 
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 (8.60) 

where Fspec and Fdif are the coherent and incoherent components of the F-factor 

and rd is the elevation angle of the diffuse reflections. The target fluctuation 

model must then consider the relative energy contributed by the two components. 

If the diffuse term is large, statistics of the F-factor become Rician [9], and that 

distribution will be imposed on steady targets. Statistics of fluctuating targets will 
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Figure 8.10  Scattering coefficients as a function of normalized surface roughness (h / ) sin: specu-

lar scattering coefficient s (solid line) and diffuse scattering coefficient d (dashed line). 
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be significantly affected only if their probability density function is narrowed to 

within the width of the Rician distribution by averaging over the observation time. 

No studies of this effect have been identified. 

8.3.3 Land Surfaces with Vegetation 

For land- or air-based radar, the effect of vegetation must be included in calculat-

ing the surface-reflected energy. Experimental data reported in [10], along with a 

survey of related literature, permitted generation of an empirical model [11, p. 287 

and Appendix 6B]. The absorption is modeled as a vegetation factor v that multi-

plies 0 in calculating the reflection coefficient for both specular and diffuse re-

flection: 

  
sin

1 exp 1.0v

b
a a

 
        

 
 (8.61) 

where the coefficients a and b are 

 a = 3.2,  b = 1  for thin grass; 

 a = 0.32,  b = 3  for brush or dense weeds; 

 a = 0.032, b = 5  for dense trees. 

The results for X-band ( = 0.03m), S-band ( = 0.1m), and VHF ( = 1m) 

are shown in Figure 8.11. The reduction in reflection coefficient increases with 

frequency and depth of vegetation, and is minimal in the VHF band unless dense 

trees cover the otherwise visible surface. Even a thin layer of grass introduces up 

to 10 dB reduction at X-band, at grazing angles greater than a few degrees. The 

model is necessarily approximate, given the wide variation in foliage density and 

water content. However, the author has personally observed that two-foot layer of 

weeds in the first Fresnel zone virtually eliminates reflection lobing on an L-band 

air surveillance radar, and that sparse grass drops the X-band reflection coefficient 

by  10 dB. 

8.3.4 The Divergence Factor 

Another factor affecting the reflected rays is the divergence factor D [2, p. 99; 3, 

p. 270], expressed approximately by [3, p. 270, Eq.(6.79)]: 

 

1 2

1 22
1

sine e

G G
D

k a G



 
  

 
 (8.62) 
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This factor results from the Earth’s curvature within the first Fresnel zone sur-

rounding the point of specular reflection, and appears as a multiplier to the reflec-

tion coefficient  in equations for the Fi. 

The factor is near unity and can be ignored for most surface-based radars, be-

cause the geometric conditions leading to D < 1 correspond to values of 

pathlength difference  that are in the intermediate region, where interpolation 

between the interference and diffraction factors masks the effects of D (see Sec-

tion 8.6.1). However, for sites or airborne radars elevated to hr > 100m above the 

reflecting surface it can reduce reflections. 

8.4 DIFFRACTION 

8.4.1 Smooth-Sphere Diffraction 

Diffraction over the spherical Earth affects the F-factor when the pathlength dif-

ference  from Section 8.2 is less than about /6, and becomes dominant at and 

below the horizon. The expression for the diffraction factor, assuming full antenna 

gain toward the horizon and using only the first mode of the diffraction equation, 

is [2, p. 122]: 
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Figure 8.11  Vegetation factor v as a function of grazing angle for different surfaces at VHF, S-band, 

and X-band. 
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 (8.63) 

where 

X  = R/L = range in natural units; 

Zr,t  =  hr,t/H = terminal heights in natural units; 

V(X)  =  attenuation (range) factor; 

Ur,t  =  height-gain factors for the two terminals. 

The constant 2.02 in the argument of the exponential of (8.63) is based on the re-

fractivity profile of the standard atmosphere, but the result should be generally 

applicable. 

The natural units are given as a function of wavelength and effective Earth 

radius as 
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where n0  1.000313 is the refractive index at the surface (see Section 7.1.4).  

Blake fits the following approximations to the diffraction height-gain factor U 

[3, p. 273, Eq. (6.87)]: 
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 (8.66) 

He expresses the range factor V(X) in logarithmic form: 

  20log 10.99 10log 17.55V X X X    (8.67) 

Thus, using (8.63)–(8.67), the diffraction factor can be expressed in decibels as 

the sum of the range factor and the two height-gain factors  
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 (8.68) 

A typical plot of the Fd0 is shown in Figure 8.12. Dashed vertical lines bound 

the intermediate region that extends between R, the limit of the interference re-

gion, and Rh, the 4/3-Earth horizon range beyond which the single-mode diffrac-

tion values are adequate. Those ranges are 128 km and 143 km, respectively, in 

this example. For interpolation between the diffraction and reflection results in the 

intermediate region, it has been found useful to place a limit F d0  1, as shown by 

the dashed line in the figure, using 

 
2

0

0 2

0 1

d

d

d

F
F

F
 


 (8.69) 

Methods have been developed using higher-order modes that yield accurate 

values of Fd0 within the intermediate region without interpolation. One example is 

the Smooth-Earth and Knife-Edge (SEKE) program [12], which includes multiple 

smooth-sphere diffraction modes, along with reflection and knife-edge diffraction, 

to calculate the F-factor for arbitrary terrain profiles. A version of SEKE that runs 

on personal computers was created, but it is not widely available. 

The pattern-propagation factor in the diffraction region is the product of F d0 

and the antenna pattern factor:  
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Figure 8.12  Typical one-way diffraction factor: Single-mode value Fd0 (solid curve), adjusted factor 

Fd0 (dashed curve). Drawn for target altitude ht = 1 km, radar altitude hr = 10m,  = 0.1m. The in-

terference and diffraction regions meet at range R at which  = /6, and the horizon range is Rh. 
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   0d t b dF f F     (8.70) 

where t is the target elevation angle and b that of the beam axis. 

8.4.2 Knife-Edge Diffraction 

Land-based radars often operate at sites where the horizon is established by a dis-

crete obstacle, as shown in Figure 8.13. The object need not have a sharp contour, 

because for radar wavelengths almost any surface feature diffracts as a knife-edge 

at low grazing angle. Trees, buildings, and even low ridges and raised ledges can 

establish a horizon at a masking angle above the surface of the smooth sphere. 

The propagation factor at this horizon is Fdk = 0.5, giving Fdk
4
 = 12 dB for two-

way propagation. Below the mask angle, Fdk drops to zero more slowly than for 

the smooth sphere, enabling some radars to detect targets in the shadow region. 

This capability is most pronounced for the longer radar wavelengths and for ob-

stacles projecting well above the surface, but it has been exploited even at micro-

waves in communications systems using the obstacle gain of a mountain or ridge.  

The propagation factor for knife-edge diffraction depends on the vertical dis-

tance h between the top of the obstacle and the direct path between the radar and 

the target (Figure 8.14). A diffraction parameter v is defined as  

 
1 2

2 2 1 1h
v h

d d

 
   

   
 (8.71) 

where  is the elevation angle relative to the edge, h is the obstacle height above 

the direct path, and d1,2 are the ground ranges from the terminals to the edge. Posi-

 

Figure 8.13  Comparison of knife-edge and smooth-sphere diffraction. 
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tive v implies a blocked path. The propagation factor for knife-edge diffraction is 

expressed in terms of Fresnel integrals as 

      
1

0.5 0.5
2

dkF v C v j S v       (8.72) 

where        2 2

0 0
cos 2   and  sin 2

v v

C v t dt S v t dt      

Approximations to Fdk can be written  
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dk
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     
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  

 (8.73) 

Obstacle gain occurs when this factor is greater than the corresponding value 

for smooth-sphere diffraction in the absence of the obstacle. However, it is im-

portant to establish that the top of the obstacle is in a free-space field. For exam-

ple, Figure 8.15 shows a typical diffraction situation with an isolated obstacle. In 

this case, the extra path length for reflections from the terrain between the radar 

and the obstacle is 0 = 0.6m, and knife-edge diffraction should be used describe 

the fields beyond the obstacle when  < 60. For longer wavelengths or lower an-

tenna or obstacle heights, the top of the obstacle would not be fully illuminated, 
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(a) Geometry of knife-edge diffraction (b) Diffraction factor Fdk 

Figure 8.14  Knife-edge diffraction. The dashed line in (b) shows the approximation (8.73) 
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and the contribution of the knife edge to Fdk would be reduced by reflection-

interference or smooth-sphere diffraction from the intervening terrain. 

The obstacle need not be visibly sharp to qualify as a “knife edge” for diffrac-

tion purposes. Analysis of diffraction over cylinders of different radii shows that 

the diffraction field is essentially at its knife-edge value when the radius of curva-

ture r of the obstacle meets the criterion 

 
3

20.0024r d   (8.74) 

where d2 is the shorter of the two paths to the obstacle, and all lengths are in me-

ters. For the example shown in Figure 8.16, the radius of curvature of the obstacle 

can be as great as 4.9 km (for X-band) or 1.8 km (for L-band) without significant-

ly reducing the fields produced at a target masked by the obstacle. 

 

Figure 8.15  Example of knife-edge diffraction. (From: [3, p. 31]. © 1982, Artech House. Reprinted 

with permission.) 
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The pattern-propagation factor Fd for knife-edge diffraction is FiFf k, where Fi 

is the interference factor that establishes the field at the top of the obstacle. The 

interference factor is discussed in the following section, but the criterion for full 

illumination of the knife edge can be expressed as an obstacle with height above 

the average surface exceeding 

 min 1h d   (8.75) 

For X-band radar this corresponds to a height hmin = 17m at d1 = 10 km, which is a 

reasonable minimum value for a path near the horizon. 

8.5 THE INTERFERENCE REGION 

In the interference region there is an unobstructed line of sight between the radar 

and the target, with enough clearance above the surface that diffraction effects are 

negligible. This clearance corresponds to a pathlength difference  between the 

direct and reflected rays that exceeds /6. The interference F-factor, including the 

divergence factor, is given by (8.9), and substitution of the more complicated ex-

pression (8.60) for strong diffuse reflections is seldom necessary. 

A plot of Fi as a function of range for a typical case is shown in Figure 8.16, 

where the target is flying at an altitude ht = 1 km over a bare land surface with 

roughness h = 1m, and a broad elevation beam is assumed. Two dashed vertical 

lines identify the intermediate region that extends from R = 128 km to Rh = 143.5 

km. The sharp increase near Rh results from applying the divergence factor, but as 
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Figure 8.16  Typical one-way Fi for target altitude ht = 1 km, radar altitude hr = 10m,  = 0.1m, sur-

face roughness h = 1m. The upturn near the horizon results from the divergence factor. 
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will be shown in Section 8.6.1 this will not affect the end result. The decay of the 

lobing structure for short ranges results from the reduction in the specular scatter-

ing coefficient as grazing angle increases. For smooth surfaces without vegetation, 

these lobes would continue to peak at +6 dB until reduced by the shaped antenna 

pattern. Rougher surfaces tend to limit the reflection effects to the initial lobe 

shown here at  115 km. 

8.6 THE INTERMEDIATE REGION 

Unless a multiple-mode diffraction model is used, the F-factor for the intermedi-

ate region must be estimated by interpolation between the interference and diffrac-

tion values. Fishback in [2, pp. 125–129] states that 

To determine the field strength in this region, it is necessary to prepare a plot of field strength 

as a function of distance for given terminal heights, extending the plot from the region in 
which interference-region methods are valid through the intermediate region into the region of 

validity for diffraction methods by bold interpolation. 

To define the region, it is necessary first to solve for the range R at which the 

pathlength difference between the direct and reflected paths reaches /6. At that 

point, the direct and reflected fields are 120 out of phase, and the interference F-

factor is approximately unity. An accurate spherical-Earth model must generally 

be used for calculation R, requiring either graphical or root-finding methods, 

based on (8.42)(8.46). The solution for the horizon range Rh is more straightfor-

ward: 

  2h e e r tR k a h h   (8.76) 

8.6.1 F-Factor as a Function of Target Range 

One method for interpolation is to calculate the interference and diffraction factors 

Fi dB(R) = 20logFi(R) and Fd dB(Rh) = 20logFd(Rh) in decibels, and connect them 

with a straight line. This is done by applying a weight x to the diffraction factor 

and 1  x to the interference factor in the intermediate region: 
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 (8.77) 
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 (8.78) 

The interference factor Fi(R) is calculated by substituting in (8.9) the target eleva-

tion angle t as a function of R from (8.47). An example for the same target trajec-

tory as in Figures 8.14 and 8.18 is shown in Figure 8.17. Note that the effect of the 

divergence factor has been eliminated by the interpolation process, which gives 

heavy weight to Fd as range approaches Rh. 

This interpolation method is somewhat less satisfactory when used with a 

VHF radar, as shown in Figure 8.18. The F-factor of the interpolated curve is 

probably below that which would be obtained from a more accurate multimode 

diffraction model without interpolation. However, the curve does capture the es-

sential difference between microwave and VHF propagation, showing an extended 

intermediate region with F going below unity at much shorter range (higher eleva-

tion), but falling more slowly as range increases into the diffraction region. 
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Figure 8.17  Typical one-way F for geometry used in preceding plots: interference factor (dash-dot 
line), diffraction factor (dashed line), interpolated result (solid line). Note that the effect of the di-

vergence factor is eliminated. 



 The Pattern-Propagation Factor 305 

 

8.6.2 F-Factor as a Function of Altitude 

A second method of presenting F is to plot it as a function of target altitude ht at a 

selected constant range R. The interpolation procedure here differs from that for 

the constant-altitude target trajectory, in that the weighting factor y is based on 

altitude: 
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where h is the altitude that results in  = /6 at range R, and h0 is the altitude at 

which the target reaches the horizon. The weighting is used in interpolation be-

tween Fd at h0 and Fi at h: 
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 (8.80) 

The functions Fd(ht)and Fi(ht) are found for the selected range R by varying ht in 

(8.68) and (8.47). Figure 8.19 shows the result, which is the height-gain factor at 
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Figure 8.18  Typical one-way F for VHF radar,  = 3m, with geometry used in preceding plots: inter-

ference factor (dash-dot line), diffraction factor (dashed line), interpolated result (solid line).  
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range R. This presentation shows the very rapid reduction in signal power as the 

target drops below the horizon. 

8.6.3 Vertical-Plane Coverage Plots 

For search radars, the desired output is usually a plot showing the contour of cov-

erage in the vertical plane, sometimes called a range-height-angle plot. An exam-

ple was shown in Figure 1.6.  

8.6.3.1 Approximate Method of Creating Coverage Plot 

An approximation of the coverage chart can be prepared from the maximum free-

space detection range R0 given by the Blake chart (Figures 1.1, 1.2) with the target 

elevation angle t on the beam axis: 

    0 1t bf f     

Calculations of range for elevation angles to be covered by the plot are calculated 

from this as 
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Figure 8.19  One-way F as a function of altitude at R = 100 km, radar altitude hr = 10m,  = 0.1m, 

surface roughness h = 1m: interference factor (dash-dot line), diffraction factor (dashed line), in-

terpolated result (solid line).  
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    0 max,   0t t t tR R F         (8.81) 

The imposes the lobing structure of the F-factor on the plot. These values may 

then be adjusted for atmospheric attenuation that varies with R and t as shown in 

Chapter 7, using the one- or two-step iterative method of the Blake chart. 

8.6.3.2 Accurate Method of Creating Coverage Plot 

A more accurate coverage chart is produced using (1.26), which includes not only 

the F-factor and atmospheric attenuation for each elevation angle but also range 

variation in the detectability factor Dx and in the factor Frdr that contains the lens 

factor, along with sensitivity time control, eclipsing, and other factors. 

The procedure for computer generation of the accurate coverage chart, once 

radar and environmental parameters have been specified in sufficient detail, is as 

follows: 

 A maximum range of calculation Rcmax is established that exceeds the detec-

tion range of the peak lobe in the coverage; 

 A set of ranges Rc i is established that that covers 0–Rcmax at intervals R that 

produce smooth plotted curves: 

 

max max

max

max

,    0,1,2, , 1c i c R

c

R

R R i i i

R
i

    




 (8.82) 

(calculations at Rc = 0 are excluded to avoid division by zero); 

 A set of target elevation angles t j is established that covers the desired sector 

with intervals  that produce smooth plotted curves: 

 

max

max

max

,    0,1,2, ,t j

t

j j j

j





   






 (8.83) 

 For each t j, the available and required signal-to-noise energy ratios (E/N0)i,j 

and Dx i are calculated, and range Rc x is identified at which (E/N0)i,j > Dx i,; 

 Interpolation between Rc x1and Rc x gives the range Rm j at which the require-

ment (E/N0)i,j = Dx i, is met; 
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 The process is repeated to cover all elevation angles up to t jmax; 

 For each t j the altitude ht1 above the plane tangent to the surface at the radar 

site is calculated: 

      1 sint m tj j j
h R   (8.84) 

 The continuous coverage envelope is plotted in rectangular coordinates Rm, 

ht1; 

 A set of lines at ranges is overlaid on the coverage envelope at convenient in-

tervals out to Rcmax; 

 A second set of lines is overlaid at constant altitude intervals h above the 

spherical Earth, where 

 
2

,   0,1,2
2

h

e e

R
h k k

k a
     (8.85) 

 An optional feature of some coverage charts is a plot of the free-space cover-

age, varying as a function of the elevation pattern of the antenna. 

Figure 8.20 shows an example of a computer-generated coverage chart using [13]. 
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Figure 8.20  Example of coverage chart for low-altitude surveillance radar: coverage with F-factor 

(heavy solid line), free-space coverage (heavy dashed line). 
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This format, in which slant range is the ordinate and altitude above the tangent 

plane is the abscissa, is more convenient for plotting than that used by Blake, in 

which the ordinate is ground range and lines of constant slant range curve inwards 

at high altitude. The latter format, described in [14], preserves the shape of the 

coverage contour when the plotted coverage extends to altitudes comparable to the 

slant range. 

8.7 SUMMARY OF PATTERN-PROPAGATION FACTOR 

The interference factor Fi expresses the magnitude of the vector sum of the direct 

ray and a ray reflected from the Earth’s surface, and is applicable to targets to 

which the path has adequate clearance above the surface. In the interference re-

gion, where adequate clearance exists, the pathlength difference  between the 

direct and reflected rays is greater than /6. 

The smooth-sphere diffraction factor Fd0 expresses the magnitude of the field 

on the path to a target that lies below the horizon, and is applicable to targets be-

yond the horizon range given, for a path that does not encounter an obstacle that 

rises significantly above the surface, by 

  2h e e r tR k a h h   (8.86) 

In the diffraction region, field is greater than zero but drops rapidly below that of 

the free-space path to the horizon range.  

The knife-edge diffraction factor Fdk expressed the magnitude of the field be-

yond an obstacle that extends above the smooth spherical surface enough to form 

a horizon at range less than Rh. The criteria for such an obstacle are a radius of 

curvature less than that given by (8.74) and a height greater than that given by 

(8.75). The field beyond the obstacle exceeds that given by smooth-sphere diffrac-

tion at the same range. 

In the intermediate region, where a line-of-sight direct path exists but has in-

adequate clearance from the surface, the field can be approximated by interpola-

tion between the diffraction and interference fields. 

A plot of the F-factor as a function of range, for a given target trajectory (e.g., 

constant altitude), exposes the nature of propagation condition as the target moves 

through the three regions: interference, intermediate, and diffraction. If the free-

space factor R
4

 is combined with the F-factor, the plot serves as the basis for 

graphical solution of the range equation, as was shown in Figures 1.3–1.5. A plot 

of the F-factor as a function of target altitude for a given range, as shown in Fig-
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ure 8.21, provides a means of exploring details of the low-altitude propagation 

effects. 

The most useful method of presenting surveillance radar coverage is the 

range-height-angle plot shown in Figure 8.22. Data for such plots can be assem-

bled with relatively simple calculations based on the Blake chart, but today are 

more easily obtained by computer programs such as [13] or [14]. 
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CHAPTER 9 

Clutter and Signal Processing 

Chapter 3 presented radar equations for the maximum detection range when clut-

ter and jamming add to the interference created by thermal noise. In those equa-

tions, the effective spectral density of interference I0e used in the equations is the 

sum of the densities of thermal noise, clutter, and jamming. In this context, effec-

tive refers to the density of white Gaussian interference that would have the same 

effect on detection probability as does the actual interference component, for 

which the spectral density may be uneven and the amplitude probability density 

function may be broader than the normal distribution. 

This chapter presents models of surface, volume, and discrete clutter for use 

in determining their energy levels at the receiver input and the extent of their sta-

tistical departures from white, Gaussian noise, as functions of range from the ra-

dar. The models are general in nature. References are provided to literature dis-

cussing in greater detail the peculiarities of different types of clutter, from which 

more refined models can be constructed as necessary and as justified by 

knowledge of a particular environment. 

Most radars incorporate some type of special signal processing designed to 

minimize the clutter at the output to display or detection circuits. The effect of 

such circuits is included in the radar equations of Chapter 3 through the clutter 

improvement factor Im, for which calculation methods are discussed here in Sec-

tion 9.6. 

9.1 MODELS OF SURFACE CLUTTER 

9.1.1 Clutter Cross Section and Reflectivity 

The geometry of surface clutter as observed by the mainlobe of a radar sited on or 

above the surface is discussed in Section 3.3. The radar cross section is given by 
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the product of the area Ac of the surface within the radar resolution cell and the 

intrinsic surface clutter reflectivity 
0
: 

 0

c cA    (9.1) 

where the area Ac is given by (3.18). 

The reflectivity is best modeled as the product of a intrinsic clutter reflectivity 

 and the sine of the local grazing angle  with which the radar ray reaches the 

surface: 

 0 sin     (9.2) 

This constant- model is generally applicable when combined with a clutter prop-

agation factor discussed in Section 9.1.2, and when  is not near 90. The reflec-

tivity described by (9.1) and (9.2) results from interaction of the radar ray with 

small-scale surface features that scatter a small fraction of the incident wave back 

to the source. To describe the persistence of clutter as   0, a small constant 

value in the order of 10
6

 is sometimes added to (9.2), or an increment 0.0001 rad 

is added to the grazing angle , as in [1, p. 405]. The equations are inapplicable to 

scattering from surfaces that support specular reflection back toward the radar, 

such as discrete clutter from some manmade objects, as discussed in Section 3.5, 

or surface clutter viewed near vertical incidence.  

Sea and land surfaces also produce a specular reflection component when 

viewed near vertical incidence, where a facet component 
0
f must be added to 

0
 

to account for quasi-specular reflection from surface facets [2, p. 108, Eq. (3.32)]: 

  
2 2 2

0 0

2 2

0 0

expv

f

   
    

  
 (9.3) 

where 

0  =  Fresnel reflection coefficient (see Section 8.3.1); 

v  =  vegetation factor (see Section 8.3.3); 

  =  (/2)   = slope of facet giving specular reflection; 

0  =  2  times the rms slope of the surface 

The facet angle  that gives specular reflection is equal to the angle from vertical 

at which the facet is observed. Values of 0 for typical sea and land surfaces are in 

the order of 0.05 rad, so for the sea and bare land surfaces for which 0v  1 the 

facet component has a sharp peak of magnitude  1/0
2
 and angular width  0 
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centered at  = /2 = 90. This will be illustrated in graphs of reflectivity for sea 

and land surfaces in Sections 9.2.2 and 9.3.1. 

Most measured data do not show the large peak value predicted by (9.3), be-

cause the beamwidth of the measuring antenna observes the surface over an angle 

sector approaching or exceeded 0, averaging the measured 
0
 over angles beyond 

the narrow quasi-specular lobe. Convolution of the measuring beamwidth 3 with 

the facet slope deviation leads to the expression for the product of measured re-

flectivity and the pattern-propagation factor Fc
4
 (discussed further in the next sec-

tion, but in this case representing the results of integration over the antenna pat-

tern) [2, p. 109, Eq. (3.23)]: 

 
2 2 2

0 4 0

2 2 2 2

0 3 0 3

exp
0.36 0.36

v

f cF
   

   
      

 (9.4) 

This equation also applies to prediction of clutter at near vertical incidence for a 

radar with beamwidth 3. 

9.1.2 Surface Clutter Pattern-Propagation Factor 

When the path between radar and clutter departs from free-space conditions, radar 

equations for clutter, such as (3.4), require the inclusion of the clutter pattern-

propagation factor Fc and the atmospheric attenuation Lc on the two-way path.
1
 

The departures from free-space propagation that enter Fc include interference be-

tween the direct ray and rays reflected in the forward direction from the surface 

beneath the path, and diffraction on paths near the surface. For simplicity, it is 

normally assumed that the antenna pattern terms in (8.9) and (8.10) for direct and 

reflected rays the interference region are equal. This permits the following discus-

sions to treat a clutter propagation factor that will be denoted by Fc , separating 

the antenna pattern factor f (rb) in the direction of the surface as a term to be 

applied for a specific radar and its beam elevation angle.  

Measurements of surface clutter reflectivity are actually measurements of the 

product cFc
4
. Hence the values of Fc

4
 applicable to the measurement geometry 

and antenna must be known if 
0
 is to be modeled for use with other radars and 

paths. In order to interpret the measured data on which the models Sections 

9.29.4 are based, it will be assumed that antenna pattern effects were taken into 

account in calculating the reported reflectivity, and that the quantity reported as 
0
 

is actually the product cFc
4
, except in rare instances where Fc is specifically ad-

dressed as a separate factor. 

                                                           
1  Blake in [2, p. 27, Eq. (1.44)] notes that “the factor Fc

4 has been omitted because by convention it is 

included in the evaluation of 0.” It is considered here as a separate factor. 
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Five regions for surface clutter measurement and modeling may be identified, 

based on the range from the radar. In order of increasing range, these are: 

 Zenith region (from airborne radar), where (9.3) or (9.4) applies; 

 Near region
2
, R < R1, where a clear path exists and Fc  1; 

 Interference region, R1 < R < R, where reflections interfere with the direct 

ray; 

 Intermediate region, R < R < Rh, where both interference and diffraction are 

applicable; 

 Diffraction region, Rh < R, where diffraction is dominant. 

Figure 9.1 shows the geometry of a surface-based radar viewing clutter from the 

last four of these regions (the first being applicable only to airborne radars). 

The transition between near and interference regions takes place at range R1, 

where 
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 (9.5) 

Solving the quadratic equation for R1 we find 

                                                           
2  Blake refers to this as the plateau region, but the plateau has a well defined slope in which 0 is 

proportional to the grazing angle. 
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Figure 9.1  Surface-clutter propagation regions for surface-based radar. 
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 (9.6) 

where hr = hr +2h is the antenna phase-center height above the average surface, 

hr is the phase-center height above the surface beneath the antenna, and that sur-

face is assumed to be 2h above the average. The approximation applies for a flat-

Earth model, which is often adequate for low-sited radar: 

 1

1 2

r

e e

h R

R k a


  (9.7) 

At range R1, the ray reaches the surface at the critical grazing angle given by
3
 

 
1sin

4
c

h

 
 


 (9.8) 

At the critical angle the specular scattering coefficient s defined in (8.57) is 0.607 

and the reflected power s
2
 is 1/e times that for a smooth surface.  

Where the depression angle  to the surface clutter rather than the range is 

known, the grazing angle can be calculated from [3, p. 312, Eq. (7.34)]: 

 1cos cose e r

e e

k a h

k a


 

   
 

 (9.9) 

Figure 9.2 shows the propagation factor for the near and far regions, for X- 

and L-band radars with h = 1m. Just within the transition range, a reflection lobe 

begins to form, but disappears at shorter ranges as s is reduced by the higher 

grazing angle. The full expression for the clutter propagation factor in these two 

regions is derived from (8.9), setting the antenna pattern terms f () to unity: 

 21 2 coscF        (9.10) 

A close approximation for Fc is shown by the dashed lines: 

                                                           
3  Blake gives this as sin1(/5hav) = sin1(/13h), essentially the same as (9.8).  
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 (9.11) 

The integrated area under Fc
4
 for the approximation exceeds the more exact value 

by  10%, indicating that clutter energy estimates using the approximation would 

exceed the exact values by about 0.4 dB. 

The transition between the far and intermediate regions, where the influence 

of diffraction begins, occurs at range R given by 

 

2
122

1 1
12

e e cr

c e e

k a hh
R

h k a


       
  

 

 (9.12) 

where hc  3h is the height of significant clutter scatterers above the average sur-

face. For the conditions illustrated in Figure 9.2, R = 8.9 km at X-band and 1.8 

km at L-band. The curves for Fc  will begin to deviate from the interference value 

beyond those ranges, as will be shown below. 

Both smooth-sphere and knife-edge diffraction must be considered for ranges 

beyond R. The diffraction equations (8.63)(8.75) are applied, substituting hc for 

ht, unless the horizon is established by an obstacle rising above the average sur-

face by at least hmin, as given by (8.75). A random rough surface may also meet 

the knife-edge criterion if the rms roughness is large enough: 
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Figure 9.2  Clutter propagation factor Fc  (solid line), and approximation (dashed line) for near and 

interference regions. Drawn for h = 1m, hr = 10m,  = 0.03m, for which R1 = 4.5 km, c = 0.14; 

and  = 0.23m, for which R1 = 0.65 km, c = 1.0; and 0v = 1. The horizon range Rh = 21.5 km. 
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 3 h hR    (9.13) 

For the conditions illustrated in Figure 9.2 this would require h > 13m for X-

band and 35m for L-band. For knife-edge diffraction, (8.71)(8.75) are used, sub-

stituting hc for ht. 

Figure 9.3 shows the effect of transition to smooth-sphere diffraction beyond 

R for the conditions used in Figure 9.2. The diffraction term causes a slight in-

crease in the propagation factor in the intermediate region, followed by a steeper 

decrease near and beyond the horizon. The two-segment approximation (9.11) and 

the full expression (9.10) for the near and interference regions are generally ade-

quate within the horizon range but give overestimates beyond the horizon. 

There are situations in which surface clutter from antenna sidelobes causes in-

terference that is not expressed by (9.1) using the area Ac from (3.18). The area 

occupied by sidelobes in the hemisphere forward or to the rear of the antenna ap-

erture is 
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A separate calculation of sidelobe clutter is necessary in order to evaluate the ap-

plicable improvement factor, which may differ from that of mainlobe clutter. 

Within the forward hemisphere the pattern-propagation factor is the product 

of the two-way sidelobe level and the clutter propagation factor: 
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Figure 9.3  Clutter pattern-propagation factor (solid line) and approximation (dashed line) from (9.11), 

for near, interference, intermediate, and diffraction regions. Drawn for h = 1m, hr = 10m, 

 = 0.03m, and  = 0.23m, and 0v = 1. The horizon range Rh = 21.5 km. 
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t r
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    (9.15) 

where ftsf and frsf are the rms voltage gains of transmitting and receiving sidelobes 

in the forward hemisphere, and Gtsf, iso and Gtsf, iso are the corresponding forward-

hemisphere power gains relative to an isotropic antenna. For the rear hemisphere, 

(9.15) is used with backlobe levels replacing forward sidelobe levels. 

The clutter contributions from sidelobes are generally much smaller than 

those of the mainlobe, but become important when one or more of the following 

conditions is encountered: 

 The mainlobe, for the range considered, does not illuminate the surface; 

 The mainlobe clutter has a Doppler shift that allows it to be reduced by a 

larger improvement factor than can be obtained at the Doppler shift of 

sidelobe clutter; 

 The two-way sidelobe gain ratio represented by the factors multiplying Fc
4
 

in (9.15) exceeds  0.1a/. 

 The sidelobes reach the surface at ranges less than does the mainlobe. 

The second and last of these conditions are often encountered in airborne radar 

operating at medium or high PRF [2, pp. 245–248], extending clutter broadly 

across the blind-speed intervals vb = ifr /2, where i is an integer.  

9.1.3 Spectral Properties of Surface Clutter 

The shape of the clutter spectrum affects the radar equation in two ways: 

 The improvement factor Im, which expresses the reduction in clutter energy 

as it passes through the signal processor, is critically dependent on the shape 

of the clutter input spectrum; 

 The clutter detectability factor (see Section 3.2.3), which adjusts the radar 

equation for correlation of clutter samples at the output of the signal proces-

sor, is sensitive to the product of input spectral density and processor re-

sponse function. 

Measurements of the clutter spectrum of sea clutter are reported in [4, p. 579] 

as “roughly Gaussian in shape.” Similar measurements on land clutter from wood-

ed sites showed a deviation from Gaussian shape, but including also a steady 

component represented by an impulse function at zero velocity.  

A Gaussian spectrum was assumed as the basis for calculating clutter effects 

in the early paper by Barlow [5] on CW radar: 
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where W0 is the power density in W/Hz at the carrier frequency, f is the Doppler 

shift, f0 is the carrier frequency, and a is a dimensionless width parameter of the 

clutter. Setting a = c
2
/8

2
vc and allowing for possible nonzero mean velocity v0, 

this can be expressed is the power density in velocity:
4
 

  
 
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2
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m s2 vcv

v vC
W v

 
  

   

 (9.17) 

where vc is the standard deviation in clutter velocity in m/s and C is the clutter 

power in W. The mean velocity can be the result of observation from a moving 

platform, or wind effect on a sea surface. Values of the half-power spectral widths 

reported in [4] and subsequent works are discussed in the following sections for 

different types of clutter. 

Use of the Gaussian form for the intrinsic clutter spectrum is convenient, be-

cause it is easily combined with components of spread caused by radar parame-

ters. These several components are: 

 The antenna scan modulation component. A scanning radar beam modulates 

the echo with the one-way voltage pattern function given by (5.3), which 

becomes a two-way power function of time t: 

  
2 2

2

3

exp 8ln 2 s tf t
 

  
 

 (9.18) 

where s is the scan rate in rad/s and 3 is the beamwidth in the scanned co-

ordinate in rad, and the Gaussian beamshape approximation is assumed. 

Transformed into frequency and converted to a velocity spectrum, this gives 

a Gaussian velocity spectral component with standard deviation given by 

 
3

ln 2
0.133   m/s

2

s s

va

w

K

  
  


 (9.19) 

                                                           
4  We express the clutter spectrum in velocity because it is an inherent property of the clutter scatter-

ers, independent of the radar frequency. 
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where K = w3/  1.2 is the beamwidth constant in rad and w is the width 

in m of the aperture in the scan plane. Thus the velocity spread is directly 

proportional to the velocity of the edge of a mechanically scanning aperture, 

or the rate of change of phase shift for electronic scanning. 

 The beamwidth component. A mean velocity v0 of clutter relative to the ra-

dar introduces another spread component of clutter with standard deviation
5
 

 0 3

0 3sin 0.300 sin    m/s
4 ln 2

v

v
v


       (9.20) 

where  is the angle between the beam axis and the relative velocity vector. 

When the intrinsic clutter spectrum is Gaussian, the over-all velocity spread is 

found as the rss sum of the three components: 

 2 2 2

v vc va v      (9.21) 

If a zero-velocity (DC) impulse is included in the spectrum for land clutter, it 

spreads into a Gaussian component having the power of the impulse, with spread 

v0 given by 

 2 2

0v va v     (9.22) 

The total spectrum of the clutter is the sum of a narrow Gaussian components con-

taining the DC power with rms spread v0 and a wider Gaussian components con-

taining the AC power with spread v.  

As discussed in Section 9.3, recent results for land clutter have shown spectra 

with an exponential, rather than Gaussian shape. The simple expression (9.17) 

must then be replaced by a spectrum representing the convolution of the exponen-

tial intrinsic spectrum with a Gaussian function of unit power given by (9.22), for 

which there is no convenient closed-form expression. The resulting spectrum falls 

off more slowly than would a Gaussian spectrum having the same half-power 

width, leading to degraded improvement factor in a Doppler-based processor. 

When sidelobe or backlobe clutter is encountered at significant levels, it spec-

trum has a beamwidth component that extends over velocities between v0 and v0, 

at levels determined by the envelopes of the corresponding lobe structure. 

                                                           
5  Nathanson [6] gives this same expression as 0.42v02sin, where 2 is the two-way half-power 

beamwidth. 
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9.1.4 Amplitude Distributions of Surface Clutter 

The clutter detectability factor (see Section 3.2.3) also adjusts the radar equation 

for departures of the probability density function of clutter voltage from Rayleigh 

(corresponding to two quadrature Gaussian components). Measurement programs 

of clutter on sea and land surfaces, especially those carried out at grazing angles 

below the critical value defined by (9.8), or with high spatial resolution (small Ac), 

have found significant departures from Gaussian statistics. The families of distri-

butions (probability density functions) used to describe surface clutter power are: 

 Weibull distribution: a two-parameter distribution given by 

  
1 1

exp ;      0
a ax x

P x x
a x

 
   

  
 (9.23) 

where a is the spread (or shape) parameter that determines the width of the 

distribution
6
 and  is the scale factor. The mean and median values and 

their ratio are 

  1ax a     (9.24) 

  50 ln 2
a

x    (9.25) 
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ax

x

 
  (9.26) 

where  is the Gamma function. A spread parameter a = 1 gives the expo-

nential distribution (corresponding to a Rayleigh voltage distribution) with 

x  = . In application to clutter, x is the product 
0
Fc

4
 of reflectivity and 

clutter propagation factor.  

 Lognormal distribution: a two-parameter distribution expressed in terms of 

the natural logarithm, base-10 logarithm, or decibels, the last being most 

convenient for description of radar targets and clutter:  

  
 

2

dB dB

dB 2

dBdB

1
exp

22

x
P x

 
  

   

 (9.27) 

                                                           
6  The Weibull spread parameter is identified subsequently as aw, but a is used here for compactness. 
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Here, for x representing a power term, xdB = 10logx, dB is the standard de-

viation, and dB is the mean (and also the median) of xdB. The median and 

mean power ratios and their ratio are 

 
  2

dB dB0.1 0.005ln10
10x

  
  (9.28) 
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50 10x


  (9.29) 

 
  2

dB0.005ln10

50

10
x

x


  (9.30) 

This ratio is expressed in decibels as 

   2 2

dB dB

50

10log 0.05ln10 0.12avx

x

 
    
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 (9.31) 

 K-distribution: a two-parameter distribution used to describe the clutter 

power x, given by 

  
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b x
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 (9.32) 

where v is the shape parameter, b is the scale parameter, and K is the modi-

fied Bessel function (or K-function). The properties of this distribution, 

most commonly applied to sea clutter, are described in [1, p. 279] and [6, p. 

109].  

When many comparable scattering sources lie within the radar resolution cell, 

the probability density function of surface clutter voltage tends to the Rayleigh 

distribution (exponential distribution for power). Schleher [7, p. 261] gives the 

conditions for this as linear dimensions of about 75m, corresponding to a 

pulsewidth n  0.5 s and azimuth beamwidth given in degrees by a  4.3/Rkm. 

These conditions are generally met for air surveillance radars, but radars used for 

tracking, marine navigation, and maritime patrol often have smaller resolution 

cells.  

Barton [2] models the spread factors of both Weibull and lognormal distribu-

tions as a function of Fc and area of the resolution cell, as shown in Figure 9.4. 

That model captures the effect of reduced grazing angle that is a major contributor 

to formation of sea clutter spikes. It shows significant increases in the spread fac-
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tor even for resolution cell areas much greater than the 5,000m
2
 suggested by 

Schleher’s criterion. 

9.2 MODELS OF SEA CLUTTER 

The several parameters for expressing a surface clutter model may now be applied 

to two types of distributed surface clutter: sea and land. 

9.2.1 Physical Properties of the Sea Surface 

Blake [3, pp. 306–308] lists the parameters used to describe the physical proper-

ties of the sea surface. The wave height is defined as the vertical distance between 

the wave to and the adjacent troughs. A Gaussian distribution of the vertical coor-

dinate h of the surface about its mean is normally assigned: 

  
2

2

1
exp

22 hh

h
p h

 
  

  
 (9.33) 

where h is measured relative to the average surface and h is its standard devia-

tion. Blake lists three other measures of wave height:  

hav =  2.6h is the average wave height; 

h1/3  =  4h is the average wave height of the largest 1/3 of the waves; 

h1/10  =  5.2h is the average wave height of the largest 1/10 of the waves.  
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Figure 9.4  Variation in spread of clutter pdf with average propagation factor for different cell areas. 
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Approximations for relationships between sea surface parameters and local 

wind velocity can be derived from data in Nathanson [8, p. 270]: 

 

6
SS

1 2SS
5.3

wv
 

    
 

 (9.34) 
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 (9.35) 

 
0 0.055 0.007SS   (rad)    (9.36) 

where 

vw  =  wind speed in m/s; 

SS  =  Douglas sea-state number. 

The same equations can be applied for the Beaufort wind scale number KB by re-

placing SS with KB  1. Table 9.1 lists the results for sea states 0 to 8. The slow 

increase in slope 0 with sea state results from the fact that both wavelength and 

wave height increase with wind speed, although not be the same factor. 

9.2.2 Reflectivity of Sea Clutter 

When the constant- model is applied to sea clutter, averaging over all polariza-

tions and directions relative to the wind, a first-order model for  depends on the 

sea state or Beaufort wind scale KB and radar wavelength [2, p. 110, Eq. (3.37)]: 

 10log 6SS 10log 58 6 10log 64 dBBK        (9.37) 

 Table 9.1  Sea Surface Parameters for Sea States 0 to 8  

Sea State 
SS 

Wind Scale 
KB 

Wind Velocity 
vw (m/s) 

 Rms Height  

Deviation h (m) 
Slope 0  

(rad) 

0 1 1.5 0.01 0.055 

1 2 2.6 0.03 0.063 

2 3 4.6 0.10 0.073 

3 4 6.7 0.24 0.080 

4 5 8.2 0.38 0.085 

5 6 10.8 0.57 0.091 

6 7 13.9 0.91 0.097 

7 8 19.0 1.65 0.104 

8 9 28.8 2.50 0.116 



 Clutter and Signal Processing 325 

 

This expression results in variation of the intrinsic reflectivity factor  (and hence 


0
 for a specific grazing angle) with SS

0.6
 and 

1
. Blake [3, p. 311] accepts as 

“the present-day view” the inclusion of Fc
4
 within 

0
, making it “customary to 

ascribe to 
0
 itself the frequency dependence that is actually the result of the inter-

ference effect.” As we have stated in Section 9.1.2, the separation of the two terms 

and use of the constant- model improves the understanding of the physical fac-

tors involved in surface clutter measurement and modeling. 

Based on (9.37) and using values in Table 9.1, the first-order model for the 

dependence on grazing angle of cFc
4
 for sea clutter is shown for different radar 

wavelengths and for a medium sea in Figure 9.5. Three of the regions of defined 

in Section 9.1.2 can be identified:  

1. The zenith region, a narrow region near vertical incidence, where quasi-

specular reflection dominates.  

2. The near (free-space) region covering most grazing angles below 70, 

where the constant- model applies;  

3. The interference region, where the interference propagation factor is 

dominant. 

The product 
0
Fc

4
 for sea clutter in the interference region reaches such low lev-

els that intermediate and diffraction regions are seldom of interest, although the 

propagation factor models of Section 9.1.2 applicable. However, atmospheric 

conditions over the sea often create ducts that invalidate simple diffraction mod-
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Figure 9.5  Reflectivity 0Fc
4  of clutter for a medium sea (sea state 4, h = 0.38m, 0 = 0.085 rad).  
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els. 

Researchers [1, pp. 382–402] have explored the variation of 
0
 with polariza-

tion and wind direction, and have put forth detailed models in which these factors 

are considered. These variations are generally small enough that they are masked 

by uncertainties in the wind scale or sea state, and hence need not be considered in 

most models and analyses. Long [1, p. 353] states, with regard to sea clutter, that: 

Obtaining a valid description of the dependence of radar cross section on wavelength is diffi-

cult because one must make measurements simultaneously with at least two radars, while 
making quantitative sea state measurements. … The problem is further complicated by the 

rapid time variations of the average value of 0 which can occur. Observations at a single 

wavelength indicate that “average” radar cross section can change as much as 10 dB in a 1-
minute interval. Therefore, the measurement errors and uncertainties tend to obscure the weak 

functional relationships that exist between 0 and  for most incidence angles. 

Given these uncertainties, it would appear that a first-order model such as (9.37) 

are adequate for most purposes. For those with interest in exploring second-order 

effects, Long’s text and a recent book [6] that explores the details of sea clutter 

statistics and models are recommended.  

9.2.3 Power Spectrum of Sea Clutter 

The sea clutter for a surface wind velocity vw has a mean velocity in the downwind 

direction that depends on the polarization, given approximately, from data in [8, p. 

292], by: 
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 (9.38) 

These expressions, plotted in Figure 9.6, apply to clutter generated by the capil-

lary waves. A different mean velocity applies to Bragg scattering in the lower 

radar bands, as observed by over-the-horizon radar [1, pp. 104–105]. 

The sea clutter spectrum is approximately Gaussian with a standard deviation 

[8, p. 286]: 

 0.11    (both polarizations)vc wv   (9.39) 

An approximation showing w proportional to sea state, presented by Blake [3, p. 

320, Eq. (7.40)], gives lower values than (9.39) for vw > 12 m/s (SS > 5), but the 

linear relationship to vw is a better match to Nathanson’s data that were Blake’s 

source.  
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When passed through an envelope detector, the standard deviation of (9.39) is 

increased by 2 . The intrinsic velocity spread vc is inserted in (9.21) to find the 

total spread v for a moving radar with a scanning antenna for use in (9.17). 

9.2.4 Amplitude Distribution of Sea Clutter 

Measurement programs have been carried out on sea clutter over grazing angles 

from below 1 to 90. Most of the data have been collected in the interference 

region (above the critical grazing angle c and below the onset of specular facet 

reflections at 90  20). and represent 
0
 influenced only slightly by Fc

4
. The 

measured distributions of power lie close to the exponential until the grazing angle 

approaches the interference region, where moderately spread versions of the 

lognormal, Weibull, or K-distributions appear.  

High-resolution measurements [9], in which a single wave crest may domi-

nate the resolution cell, have tended to show agreement with the lognormal distri-

bution, with dB between 4 and 6.1 dB. The corresponding ratios of average to 

median 
0
 are 1.8 and 4.3 dB, values that apply to Weibull spread factors a = 1.06 

and 1.65, respectively. At very low grazing angles and with high-resolution radar, 

sea clutter may be “spikey” in nature, described by larger spread factors for 

Weibull or lognormal distributions. 

9.3 Models of Land Clutter 

Unlike sea clutter, there are no standard “states” that can be invoked to describe 

the physical properties of the land surface. Using a Gaussian model, it can be de-
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Figure 9.6  Mean and standard deviation sea clutter velocity for vertical and horizontal polarizations.  
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scribed by its roughness (the standard deviation h from the average surface), the 

slope 0, and by the type and thickness of any vegetative cover. There are no 

standard terms that are associated with certain combinations of those parameters, 

but terms such as used in Table 9.2 can be used to describe several surface types 

as examples. The Gaussian model, however, fails to capture the effects of some 

natural and most manmade structures that rise from the surface, which are de-

scribed separately as discrete clutter in Section 9.4. 

Agreement of measured land-clutter data with the constant- model is shown 

in Figure 9.7. The data agree within 1 dB with the model for grazing angles in the 

near region. 

Table 9.2  Land Surface Parameters 

Surface  

Description 

Intrinsic  

Reflectivity  (dB) 

Rms Height  

Deviation h (m) 

Slope 0  

(rad) 

Mountains 5 100 0.1 

Urban 5 10 0.1 

Wooded hills 10 10 0.05 

Rolling hills 12 10 0.05 

Farmland, desert 15 3 0.03 

Flatland 20 1 0.02 

Smooth surface 25 0.3 0.01 
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Figure 9.7  Measured X-band land clutter reflectivity 0 (solid line), compared to model with constant 

 = 12 dB (dashed line). Measured data replotted with grazing angle on log scale from [10, p.103, 
Figure 2.44]. 
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9.3.1 Reflectivity of Land Clutter 

The reflectivity of land clutter is much more difficult to characterize than that of 

the sea. The constant- model applies at grazing angles in the interference region, 

giving the values of  that are shown in Table 9.2. The reflectivity is almost inde-

pendent of wavelength, whose effect appears instead in the propagation factor for 

the intermediate and diffraction regions. Propagation considerations become the 

dominant factor at the low grazing angles applicable to surface-based radars. One 

study [11] showed that practically all of the variations in measured reflectivity of 

terrain could be attributed to the propagation factor, permitting use of a constant 


0
 (e.g., 30 dB) to reproduce the measured mean and pdf, at least in the micro-

wave region.  

A first-order modeling approach [12] assumes a homogeneous surface with 

given h and  for each land type (Table 9.2), and assumes the radar antenna has 

been sited on a point 2h above the mean local surface. This leads to an antenna 

altitude above the mean surface hr = hr + 2h. A single family of curves for 
0
 

then results (Figure 9.8), which may be modified as needed for propagation fac-

tors at different wavelengths. 
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Figure 9.8  Land clutter reflectivity versus grazing angle. The transition ranges R1 for propagation 

factor have been calculated here for  = 0.1m, hr = 10m. 
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Studies and measurement programs on land clutter have been complicated by 

the fact that properties of the terrain underlying the path to clutter may differ from 

that in the resolution cells for which clutter is to be predicted or measured. For 

example, hilly terrain may be observed either on a path over a similarly hilly sur-

face, or over flat terrain with quite different properties. It is therefore essential to 

separate the propagation factor from the intrinsic reflectivity of the observed cell. 

In one major work on land clutter [10] where the product 
0
Fc

4
 of these two fac-

tors was measured and analyzed statistically, it was found that the correlation be-

tween 
0
Fc

4
 and grazing angle at the cell was weak and sometimes negative. 

Grazing angle was therefore excluded as a factor in the clutter model. The reason 

for absence of correlation is illustrated in Figure 9.9, which shows a simple case 

of corrugated terrain. The local surface slope is zero (by definition) at the tops of 

peaks and the bottoms of valleys, and maximum halfway between (where the 

mean surface level is shown by the dashed line). Thus, 
0
 is greatest halfway up 

the slopes facing the radar, drops to near zero at the peaks and valleys, and to zero 

on slopes facing away from the radar. The surfaces with maximum slope, howev-

er, are shadowed by the intervening peaks.  

Paths A and B in Figure 9.8, which arrive at the surface with the highest graz-

ing angles, are subject to knife-edge diffraction from the preceding peaks, where 

the two-way propagation factors Fc
4
  12 dB. That loss applies in spite of optical 

“visibility” of the surface. Path C, with grazing angle and 
0
 near zero, has path 

clearance sufficient to give Fc
4
  0 dB. Diffraction theory predicts a continuous 

variation in F, rather than an abrupt drop from unity to zero, between the region of 

adequate clearance above the intervening terrain and the shadowed region. As a 

result, no positive correlation should be expected between grazing angle and 


0
Fc

4
 for “visible terrain.” The constant- model does not predict that there should 

be positive correlation with the product 
0
Fc

4
 in the intermediate region, and sug-

gests that the correlation may be negative for some surface contours.  

This is only one example of the complexity introduced by the propagation 

factor that results from terrain between the radar and the cell being measured or 

modeled. A purely statistical analysis that ignores propagation theory cannot pro-

vide an adequate basic for land clutter modeling. The applicability of separate 

modeling of Fc and 
0
, shown in [11], suggests that propagation alone contributed 

.

A B

C

 
Figure 9.9  Propagation paths in simple sinusoidal terrain model. 
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most of the statistical spread in clutter echo power, so a model such as shown in 

Figure 9.4 should be useful. 

Another misinterpretation of measured data leads to the idea that 
0
 in tree-

covered terrain increases as the grazing angle approaches zero, attributed to specu-

lar scattering from vertically oriented cylindrical tree trunks [13]. The strong in-

crease shown in these data are directly traceable to the terrain contour between the 

radar site and the clutter measured at the longest ranges in that experiment. The 

assumption was made that grazing angle varied inversely with measurement 

range, as would be true for terrain on a flat Earth (or spherical Earth at relatively 

short ranges). In the actual case, the terrain changed from a basically level surface 

to rising ground at the longest ranges measured, causing the local grazing angle to 

increase after having decreased with range over the level portion. It was the up-

ward tilt of the terrain, and the accompanying increase in propagation factor, ra-

ther than the presence of vertically oriented tree trunks, that caused the increase in 

reflectivity. 

As the next step beyond the first-order model of Table 9.2, it is often possible 

to model two or more surface regions in each azimuth sector of a specific radar 

site with different average surface slopes (not 0, but averages over much larger 

regions), and different roughness parameters and vegetation. These can be used to 

estimate both Fc and 
0
 for cells at different rages in an azimuth sector. Where 

surface features are present that can be not modeled by a Gaussian distribution of 

heights, discrete clutter sources may be added to the model. Beyond this step, a 

site- and azimuth-dependent propagation model such as SEKE [14], used in [11], 

can be used. 

9.3.2 Power Spectrum of Land Clutter 

The velocity spectrum of land clutter is narrow, and has been modeled as Gaussi-

an with v < 0.5 m/s for vegetation in windy conditions. However, excellent data 

have been gathered with a coherent clutter measurement system having large dy-

namic range [10, Chapter 6] that show the actual spectrum to have an exponential 

shape (Figure 9.10). The total power of all the spectra plotted in this figure is 

normalized to unity. The exponential spectrum for windy conditions has 94% of 

its power within 0.5 m/s, compared to 95% for a Gaussian spectrum with v = 

0.20 m/s. Neither type of spectrum shows the broad spread of power predicted by 

power-law equations of the form 1/[1 + (f /fa)
n
], where n = 2 or 3. Reported clutter 

data [16] showing such spectra can be explained by presence of nonlinearity (e.g., 

logarithmic characteristics) in the receivers used for measurement. 
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The accurately measured data also show a nonfluctuating (DC) component 

with the power ratio r of dc to ac given by [10, p. 580, Eq. (6.4), modified for met-

ric units]: 

 
1.55 1.21

GHz

140

w

r
v f

  (9.40) 

where the constant in the numerator applies for vw in meters per second. Spread 

components from antenna scan (9.19) and platform motion (9.20), with vs = 0, 

must be combined with the spectra of Figure 9.10 and the DC component by con-

volution. Unless the internal motion component is dominant, the result is approx-

imately Gaussian with a standard deviation given by (9.21) for the fluctuating 

component and (9.22) for the DC component. As noted earlier, the slowly falling 

spectra reported in [15] with velocities beyond the physical limits of scatterer mo-

tion should not be used. 

9.3.3 Amplitude Distribution of Land Clutter 

The measured amplitude distributions of land clutter in the zenith and near (plat-

eau) regions are Rayleigh (exponential power), until near the transition to the in-

terference region, where Weibull or lognormal distributions apply. The change 

from Rayleigh to more widely spread distributions follows the model shown in 

Light air

Breezy

Windy

Gale

Gaussian,

 = 0.20 m/sv

2 1.6 1.2 0.8 0.4 0 0.4 0.8 1.2 1.6 2
80

70

60

50

40

30

20

10

0

10

20

Velocity in m/s

S
p

e
c
tr

a
l
d

e
n

s
it
y

in
d

B
/m

/s

.

 

Figure 9.10  Exponential spectra of windblown trees for four wind conditions derived from models in 

[10, Table 6.1, p. 578], compared to a Gaussian spectrum with v = 0.2 m/s. 
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Figure 9.4, with the most extreme spreads encountered in intermediate and dif-

fraction regions. 

9.4 DISCRETE CLUTTER 

The broadly spread Weibull and lognormal distributions do not normally extend to 

the high peak values contributed by manmade and some natural land features. 

Birds in flight and land vehicles are also sources of clutter that require models 

separate from those of sea and land clutter.  

9.4.1 Discrete Land Features 

Of the several types of discrete clutter, buildings (including towers and water 

tanks) present the largest RCS. Table 9.3 shows different models of discrete land 

clutter taken from the literature [16–19], along with a recommended model for 

general use. Large, rigid sources can be regarded as having very small spatial ex-

tent (typically only one or a few meters) and spectra of essentially zero width. 

They establish the dynamic range at the input to the receivers of most systems, 

and place special requirements on methods of controlling false alarms.  

9.4.2 Birds and Insects 

The clutter produced by birds was not discussed by Blake, although it poses a ma-

jor problem for naval and other types of radar attempting to detect and track low-

Table 9.3  Models of Discrete Point Clutter 

Parameter RRE 

[16] 

Ward 

[17] 

Mitre  
Suggested 

Value 
Rural 

[18] 

Metro 

[19] 

Density (per km3) for RCS:  

 cFc = 102 m2 3.5 1.8   2 

 cFc = 103 m2 0.8 0.36 0.02 2 0.5 

 cFc = 104 m2 0.15 0.18 0.002 0.2 0.2 

Resulting mean 0 26 26 44 24 26 

Number of points per 1 beam between 
0 and 5 km: 

 

 cFc = 102 m2 0.7 0.35   0.4 

 cFc = 103 m2 0.16 0.07 0.004 0.4 0.1 

 cFc = 104 m2 0.03 0.035 0.004 0.04 0.04 
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altitude targets. The bird RCS for mid-microwave bands can be modeled by a 

lognormal pdf, with a median 50 = 30 dBsm and a standard deviation y = 6 dB. 

This implies that only 0.13% of the bird population exceeds 12 dBsm. However, 

populations of birds are such that there may be 10
5
 birds within 50 km of the ra-

dar, of which 130 exceed 12 dBsm. Variation with radar wavelength and type of 

bird is discussed in [8, p. 184; 19]. Bird RCS is not sensitive to polarization, nor 

are the larger bird RCS values sensitive to wavelength (at least for  < 0.3m). 

Small birds become resonant near that wavelength, and are in the Rayleigh region 

at longer wavelengths. Larger birds resonate in the UHF bands, but all are in the 

Rayleigh region for VHF and lower bands. 

The most damaging feature of the bird population, in modern Doppler radar 

systems, is its velocity distribution. The birds move at air speeds as great as 25 

m/s, and [21, 22] show an approximate Gaussian distribution with a mean of 15 

m/s and a standard deviation of 5 m/s. 

Migrating birds are generally distribution exponentially in altitude, with a 

scale height near 1 km, occasionally extending upwards to 5 km or more, although 

most local birds are at lower altitudes. This means that that the birds are often at 

altitudes high enough to provide free-space propagation, Fc = 1, or even in reflec-

tion lobes for which Fc  2. A bird with average  = 12 dBsm may appear in the 

radar with Fc
4
 = 0 dBsm. This, and the presence of multiple birds in a flock, 

makes it impossible to reject birds on the basis of signal thresholding unless the 

desired targets lie well above 0 dBsm. Only filtering based on velocity can be re-

lied upon to reject bird clutter, and this requires either a broad Doppler rejection 

notch or tracking to determine absolute velocity as a basis for discarding the in-

formation. It should be noted that track files on detectable birds cannot be 

dropped, because the entire detection and track initiation process would then have 

to be repeated on subsequent detections. 

A similar consideration applies to insects [20], for which the median of the 

log-normal distribution may be 70 dBsm 10 dB in microwave bands. For a 

standard deviation y = 6 dB, the mean is increased to 70 + 5 = 65 dBsm. 

Clouds of thousands of insects then have mean  30 dBsm with a Rayleigh dis-

tribution. A propagation factor that can average up to +8 dB places insects also 

within the detection capabilities of modern systems.
7
  

                                                           
7  This writer had occasion in 1947–49 to detect and automatically track individual insects at ranges of 

hundreds of meters, using an X-band variant of the World War II SCR-584 fire control radar at 

White Sands Proving Ground. The radar had a peak power of 60 kW, pulsewidth of 0.5 s, and a re-
flector diameter of 1.8m. On close arrival at the radar, these insects proved to be dragonflies. 
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9.4.3 Land Vehicles 

Land vehicles become a clutter problem for many air surveillance radars, because 

their RCS is comparable to that of aircraft, and their velocities lie in the passband 

of MTI and many pulsed Doppler systems. Here, at least, the propagation factor 

almost always favors the desired (aircraft) target, which necessarily lies at higher 

altitude than the land vehicle, which is often in the diffraction region. However, 

when there are dozens or hundreds of land vehicles within line of sight of the ra-

dar, false alarms are inevitable unless velocity filtering removes targets whose 

velocities are below  40 m/s.  

9.4.4 Wind Turbines 

A radar clutter problem that has risen since Blake’s work is the wind turbine. The-

se are increasingly appearing in farms of tens of turbines, with individual blade 

lengths up to 40m, mounted on towers that place the blades up to 200m above the 

local terrain. The towers themselves constitute strong discrete clutter sources with 

zero Doppler. The blades, rotating at 10–30 rpm, have tip velocities up to 75 m/s 

and peak RCS exceeding +40 dBsm, and hence can pass through most Doppler-

based signal processors. At this writing, the IEEExplore database contains some 

40 papers on radar interference caused by wind turbines. Only a few of these pro-

vide data that can be used for modeling and analysis. Some attempt to predict the 

effect of an extended shadowed region beyond the turbine, in which echo power 

from desired targets may be reduced, but the probability of a target lying within 

such a shadow is negligible. The primary effect of turbines is to create strong, 

discrete clutter accompanied by high-velocity components from periodic specular 

“flash” from the blades. 

One useful paper from this set [23] includes a histogram of calculated RCS 

values, showing a continuous Rayleigh-like distribution with a peak (and median) 

value near +16 dBsm, combined with a low-probability values extending up to 

+44 dBsm, representing the periodic blade flashes. The paper emphasizes that 

objects like wind turbines are usually viewed at ranges shorter than their far-field 

range at which RCS is defined, and that surface reflections cause large departures 

from the plane wave on which most computational models are based. 

9.5 MODELS OF VOLUME CLUTTER 

Volume clutter appears in two forms: precipitation, and chaff. The methods of 

modeling are similar, as both occupy a volume in space and consist of huge num-

bers of scatterers distributed over the volume with slowly varying densities. With-
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in a radar resolution cell, the density of scatterers can normally be considered con-

stant, except when the lower edge of the elevation beam falls below the horizon, 

or the upper edge lies above the maximum elevation of the clutter volume. The 

result is a very close approximation to Rayleigh pdf, and a velocity spectrum de-

termined by motion of the air mass in which the scatterers are embedded. 

9.5.1 Volume Clutter Cross Section and Reflectivity 

The radar cross section of volume clutter is given by the product of the volume Vc 

of the clutter within the radar resolution cell and the volume reflectivity v of the 

scattering particles, expressed in m
2
/m

3
: 

 
c c vV    (9.41) 

When clutter extends beyond the resolution cell in all dimensions, its volume is 

 3   m
2

c a c e n

c

p p

R R c
V

L L

  
  (9.42) 

where 

Rc  =  range from the radar in m;  

a, e  =  azimuth and elevation half-power beamwidths in rad; 

Lp  = beamshape loss; 

n  =  width of the processed pulse in s; 

c  = velocity of light in m/s. 

When the elevation beamwidth includes the surface beneath the clutter, or extends 

above the clutter, the second term in (9.42) is replaced by integration over the 

elevation sector, resulting in: 
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 (9.43) 

where 

f(·)  =  one-way elevation voltage pattern of the antenna; 

  =  elevation angle in beamwidths; 

b  =  elevation of beam axis in beamwidths; 
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max  =  maximum elevation of clutter at range Rc; 

(Rc,)  =  clutter reflectivity at range Rc and angle , in m
2
/m

3
; 

(Rc)  =  clutter reflectivity at range Rc, in m
2
/m

3
; 

h  =  altitude in m; 

hmax  =  maximum altitude of clutter at range Rc. 

The integration over elevation angle in (9.43) is equivalent to that in (3.46), in that 

the clutter reflectivity is defined as zero outside the limits occupied by the scatter-

ers. The integrals in (9.43) give the product of pattern-weighted extent of the clut-

ter and the reflectivity of clutter when it is present. Except in rare cases, the clutter 

is assumed to extend beyond the azimuth beamwidth, so integrals in that coordi-

nate are unnecessary. 

9.5.2 Volume Clutter Pattern-Propagation Factor 

The effect of the antenna’s azimuth pattern is included in Lp, as is the elevation 

pattern when clutter fills the beam. The integrals in (9.43) replace Lp for clutter 

than does not fill the elevation beam. Inclusion of propagation effects is less criti-

cal for volume clutter than for surface clutter, but an interference pattern in eleva-

tion introduces a more complicated integral: 
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where, from (8.5) and (8.10): 
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The expression given by Blake [3, p. 300, Eqs. (7.18) and (7.19)] to express the 

power received from volume clutter includes within the integral the atmospheric 

attenuation coefficient, which may vary with range as a result of precipitation. 

This loss is expressed as a separate term in (3.4) and subsequent equations for 

received clutter energy, and evaluated in Section 7.3. We use calculations of the 

product Fc
4
 without involving the attenuation to clarify the origin of the clutter 
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echoes. It should be remembered that clutter energy from ambiguous ranges must 

be calculated using (3.5), using the attenuation applicable to each ambiguity. 

The volume clutter propagation factor Fc may be defined as the fourth root of 

the ratio of the integral in (9.44) to that in (9.43). In the presence of strong reflec-

tions over the elevation beam (  1), Fc
4
  6 (or +8 dB), a factor large enough to 

require inclusion in the radar equation.  

9.5.3 Spectral Properties of Volume Clutter 

The spectral properties of volume clutter have the same effects on the radar equa-

tion as did those of surface clutter: the improvement factor Im depends on the loca-

tion and shape of the clutter spectrum, and the clutter detectability factor depends 

on the correlation of clutter samples being integrated by the processor. Nathanson 

[8, p. 240, Eq. (6.10)] expressed the standard deviation of the volume clutter ve-

locity spectrum as the sum of four components. We add here the component va 

caused by antenna scanning: 

 2 2 2 2 2

v vc va vs vb vf        (9.47) 

where 

vc  =  intrinsic spread from turbulence within the air mass; 

va  =  spread caused by scanning of the radar beam; 

vs  =  spread cause by wind shear effect across the elevation beamwidth; 

vb  =  spread caused by varying radial velocity across the azimuth beam-

width; 

vf  =  spread caused by projection of the particle fall velocity across the el-

evation beamwidth. 

A value vc  1 m/s is normally assigned to the turbulence component, but 

Nathanson notes that extreme values vary over 0.5 < vc < 2 m/s. The antenna 

scanning component is given by (9.19), and the azimuth beam-broadening com-

ponent by (9.20), as for surface clutter. The wind-shear component, when clutter 

fills the elevation beamwidth, is
8
 

 0.3
4 ln 2

sh c e

vs sh c e

k R
k R


     (9.48) 

where 

ksh  =  wind shear constant in m/s per km along the beam direction; 

                                                           
8  Nathanson [8, p. 242] uses a two-way beamwidth, for which the constant factor in (9.48) is 

1 8ln 2 0.425 . 
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R  =  range in km; 

e  =  elevation beamwidth in rad. 

The wind-shear spreading component when clutter occupies only a portion of the 

elevation beamwidth is reduced, and can be calculated by integrating the profile of 

velocity as a function of altitude, weighted by the fourth power of the pattern-

propagation factor, to yield a velocity spectrum for a given range: 

      
max

2
4 2

0

1 2 cos
2

h

cr

w sh b

c e e

Rh h
W v v k h f x x dh

R k a

 
       

 
  (9.49) 

where h is in km. The power in the input spectrum is: 
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The mean v0 of this spectrum is: 
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and the variance 
2
vs is: 
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The wind shear and azimuth beam-broadening components are the counter-

parts of the beamwidth component v in (9.20) for surface clutter, appearing here 

as separate terms for particle velocities in each of the two angular coordinates. 

The azimuth beam-broadening component vb is calculated, as for surface clutter, 

from (9.20), in which the azimuth beamwidth a is used. The variation in fall ve-

locities is estimated by Nathanson to be 

 1.0sin    (m/s)vf    (9.53) 

for rain, where  is the elevation angle. For snow the initial constant is << 1 m/s.  

The mean velocity of volume clutter is the projection of the wind velocity 

vector on the beam axis: 
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  0 cos cosw w w bv v A A     (9.54) 

where 

vw = the wind speed; 

Aw  = azimuth angle of the wind vector; 

Ab  = beam-axis azimuth; 

 = elevation angle in rad. 

When the wind vector is aligned with the beam axis, this mean velocity is a reced-

ing component, expressed by the minus sign in (9.54). Added to the horizontal 

component is a shift in the mean rain fall rate projected on the beam direction as 

an incoming velocity component 

 0 sin    (m/s)f fv v   (9.55) 

where the fall velocity vf can reach 9 m/s in heavy rain. 

When sidelobe or backlobe clutter is encountered at significant levels, it spec-

trum has a beamwidth component that extends over velocities between v0 and v0, 

at levels determined by the envelopes of the corresponding lobe structure. 

9.5.4 Amplitude Distribution of Volume Clutter 

In most case the huge number of scatterers contributing to volume clutter in the 

resolution cell ensures a Rayleigh distribution of amplitudes. One report [24] 

shows measurements of rain clutter following Weibull distributions with spread 

factors as high as aw = 1.6. It is possible that such distributions will apply to a 

range interval extending over different portions of a cloud, from the edges to the 

center, for which the average reflectivity changes significantly. However, unless 

these gradients are quite steep the statistics over the typical CFAR window should 

adhere closely to the Rayleigh distribution, and a range-dell-averaging CFAR 

should not experience excessive false alarms. 

9.5.5 Precipitation Clutter Models 

Models of precipitation clutter are well defined, possibly due to the intensive ap-

plication of weather radar to measurement of rainfall rates [25]. The radar cross 

section of a spherical drop of water with diameter D  /16, meeting the Rayleigh 

small-sphere approximation, is [25, p. 35, Eq. (3.6)]: 
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where 

D  =  drop diameter in m; 

  =  wavelength in m; 

Kw  =  (m
2
  1)/(m

2
 + 2); 

m  =  n jn = complex refractive index of water.  

Values of |Kw|
2
 are 0.91 to 0.93 for water in microwave and millimeter-wave 

bands. For ice the corresponding value is |Ki|
2
 = 0.18. 

Radar meteorologists define a reflectivity factor Z for precipitation as the 

weighted average of D
6
 over volume: 
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i
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   (9.57) 

where 

V  =  elementary volume in m
3
 occupied by precipitation; 

Di  =  drop diameter in m; 

n(D)  =  number of drops in V having diameter D. 

The volume reflectivity is then 

  
5

2 2 3

4
     m mv wK Z


 


 (9.58) 

When the Rayleigh approximation is not met, and equivalent reflectivity fac-

tor Ze is substituted for Z. The value of Z is often expressed in radar meteorology 

as dB(Z) = 10logZ (mm
6
/m

3
), which is 180logZ (m

6
/m

3
). The commonly used 

Marshall-Palmer drop-size distribution leads to a relationship between Z and rain-

fall rate rr in mm/h: 

 1.6 6 3200     mm mrZ r  (9.59) 

which with |Kw|
2
 = 0.93 gives: 

 
1.6

14 2 3

4
5.7 10     m mr

v

r  


 (9.60) 

For snow with a rate rs in mm/h of water content 
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A plot of (9.60) and (9.61) for rain and snow at different wavelengths is 

shown in Figure 9.11.
9
 The values for rain in the millimeter-wave bands have 

been adjusted for drop sizes not meeting the Rayleigh approximation. 

The amplitude distribution of precipitation is Rayleigh, and the velocity spec-

trum is as discussed in Section 9.5.3. A significant property of precipitation clutter 

is that the echo of a circularly polarized (CP) transmission is returned with CP of 

the opposite sense. This permits the polarization factor Fpc in (3.4) and subsequent 

equations for clutter energy to be reduced, typically by 20–25 dB, by designing 

the receiving antenna to respond to the same CP sense that was transmitted, with 

lesser reduction for heavy rain and snow. The loss in target energy with this ar-

rangement is 2–4 dB for aircraft targets, and hence a CP improvement factor in 

signal-to-clutter ratio can be as much as 20 dB, at the expense of reduced range in 

                                                           
9  The constants and exponents in (9.60) and (9.61) require modification for the millimeter-wave 

bands. Adjusted values are derived as a function of wavelength in the Mathcad worksheet on the 

DVD, which was used in preparing Figure 9.11. The procedure can be reviewed in the PDF file of 
that worksheet by those lacking the Mathcad program. 
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Figure 9.11  Volume reflectivity of rain (heavy lines) and snow (light lines). 
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thermal noise. A dual-polarized receiving system can be designed to switch be-

tween CP senses, avoiding the loss in target echo in regions not occupied by sig-

nificant precipitation clutter. 

9.5.6 Chaff Models 

The RCS of an individual dipole of chaff viewed broadside is 0.86
2
. The average 

over all aspect angles drops to 0.15
2
. Early data on aluminum chaff gave a total 

RCS, as a function of its weight W in kilograms, frequency f0 in GHz, and wave-

length  in m as 

 
2

0

6,600 22,000   m
W

W
f

     (9.62) 

for chaff dipoles cut to resonate at . More recent data [26, p. 420] show that 

modern aluminized-glass chaff can achieve more than twice the RCS given by 

(9.62) over a two-octave band, with  taken as the geometric mean value. The 

reflectivity across that bandwidth is shown in Figure 9.12. For  > 0.3m, resonant 

dipoles may give way to long streamers called rope, producing lower RCS for its 

weight, but being less subject to breakage. Chaff falls slowly with a motion tend-

ing to randomize the orientation of individual dipoles, and hence is not very sensi-

tive to the radar polarization, although stronger response is seen for horizontal 

 

Figure 9.12  Radar cross section of a chaff package. (From: [26]. © 1999, Artech House, reprinted 
with permission.) 
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polarization, especially for times well after deployment. 

The amplitude distribution of chaff is Rayleigh, and the spectral properties 

are as discussed in Section 9.5.3. Significant difference between chaff and precipi-

tation clutter are that chaff echoes cannot be canceled by use of CP, and chaff can 

appear at much higher altitudes. The latter can be exploited by the attacking force 

to produce clutter beyond the unambiguous range of the radar waveform, where 

wind shear displaces the average velocity from that of shorter-range clutter [2, p. 

121]. The resulting broad clutter spectrum requires a broader Doppler rejection 

notch than would be required for clutter in a single range ambiguity. 

9.6 CLUTTER IMPROVEMENT FACTOR 

Clutter can be reduced through filtering based on its relatively low Doppler shift. 

The voltage response of an arbitrarily defined Doppler filter as a function of ve-

locity, normalized for unity power gain on white noise, can be expressed as a 

function of velocity: 

    
1

H v H v
G

   (9.63) 

where the average filter gain is  2 .G H v dv





   

The input energy C of the clutter spectrum W(v)is given by (9.50) and the en-

ergy at the output is 

    
2

oC W v H v dv





     (9.64) 

The clutter improvement factor is then defined as 

 i

m

o

C
I

C
  (9.65) 

These expressions can be applied to MTI and pulsed Doppler signal processors, 

and in special cases closed-form expressions can be written for the improvement 

factor. In general, the clutter spectrum in these special cases is Gaussian, charac-

terized by a standard deviation v and a mean velocity v0. 
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9.6.1 Coherent MTI Improvement Factors 

Coherent MTI refers to systems in which the transmitter is coherent over the 

number of pulses used in the canceler, and also to coherent-on-receive systems in 

which a coherent oscillator (COHO) in the receiver is locked to the transmitter 

pulse. The velocity response of an m-delay canceler using binary weights is 

   2 sin

m

m

b

v
H v

v

 
   
 

 (9.66) 

where the basic blind speed is 

    (m/s)
2

r

b

f
v


  (9.67) 

Voltage weights applied to the m + 1 pulses by the canceler are 

 

1, 1                   for 1,

1, 2, 1             for 2,

1, 3, 3, 1        for 3,

iw m

m

m

   

    

     

 (9.68) 

The average power gain is 

 
2 2, 6, 20  for 1, 2, 3i

i

G w m    (9.69) 

The normalized response is 

  
2

sin

m
m

m

b

v
H v

vG


   (9.70) 

For a Gaussian spectrum, the performance of a coherent MTI system using 

binary weights for two, three, and four pulses can be expressed in terms of the 

standard deviation and mean velocity of the clutter spectrum, the number of cas-

caded cancelers, and the velocity v0f  to which the null has been adjusted. To arrive 

at expressions that are independent of the radar wavelength  and pulse repetition 

frequency fr, it is convenient to normalize the spectral parameters to the basic 

blind speed vb of the radar waveform: 
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The normalized clutter spread from scanning, from (9.19), is 

 
3

2 ln 2 1.665s

za

rf n


  


 (9.73) 

where n = 3/s is the number of pulses per beamwidth of scan. This spread places 

an upper limit on the improvement factor when other spread terms are absent. 

MTI improvement factors for one-, two-, and three-pulse cancelers, as given 

by Raemer [27, p. 306], can be written in terms of the normalized parameters: 
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 (9.76) 

The term vzf is the normalized null velocity, which is zero unless some form of 

adaptation to the mean clutter velocity is used.  
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Blake considers the overall improvement factor that results from the clutter 

spread, as in (9.74)(9.76), along with limitations from internal circuit instability, 

transmitter instability, and similar sources [3, p. 342, Eq. (7.60)]: 

 
1 1 1

m ma mbI I I
    (9.77) 

This expression, which implies summing of output residue power calculated sepa-

rately for two or more instability terms, applies only to single-pulse cancelers or 

when the second and subsequent terms result from instabilities that are random 

from pulse-to-pulse. If those terms are correlated, increasing the spread z, or the 

factors 1/
4
z in (9.75) or 1/

6
z in (9.76) cause a much greater reduction in im-

provement factor than would result from random instabilities. 

9.6.2 Noncoherent MTI Improvement Factors 

Noncoherent MTI uses samples of the clutter itself to establish the reference phase 

against which targets and clutter are detected. The performance is generally infe-

rior to that of coherent MTI, but it has the advantage of maintaining the null at v0: 
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 (9.80) 

9.6.3 Other MTI Considerations 

In applying the improvement factor expressions of Sections 9.6.1 and 9.6.2, sever-

al issues listed below must be considered, extending beyond the models of clutter 

spectra and processor velocity response. 

 MTI losses. The improvement factor from MTI processing is diluted by the 

presence of several MTI loss terms, discussed in Section 10.2.5. Those loss-
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es apply over the entire range segment in which MTI processing is used, 

and they affect the detection range even for targets at ranges where no clut-

ter is present unless steps are taken to apply the processing only in cluttered 

regions.  

 CFAR losses. The presence of uncanceled clutter may require use of con-

stant-false-alarm-rate (CFAR) detection, introducing another loss term (Sec-

tion 10.2.5). 

 Multiple-time-around clutter. All the expressions given in Sections 9.6.1 are 

limited to cases in which coherence is maintained for clutter over all the 

pulses used in the canceler process. If multiple-time-around clutter (returned 

from sources beyond the unambiguous range Ru = c/2fr of the waveform) is 

present, fill pulses, in addition to those used in the canceler, must be trans-

mitted following each change in waveform (e.g., PRF, RF, or phase modu-

lation within the pulse) or beam position (other than the small changes of a 

continuously scanning beam), so that the same clutter appears in each can-

celer pulse. Staggered PRF or pulse-to-pulse frequency agility are incom-

patible with MTI when multiple-time-around clutter is present. In addition, 

the coherent-on-receive technique cannot be used when multiple-time-

around clutter is present. A theoretical solution to using coherent-on-receive 

with multiple-time-around clutter has been proposed, but the complexity 

and losses involved render it impractical for most applications. 

 Staggered PRF. Use of staggered PRF imposes a limit to improvement fac-

tor [28, p. 2.44]. 

 Nonlinearity. The Gaussian spectrum appearing at the receiver input is mod-

ified by any nonlinearity prior to the MTI canceler [28, 29], greatly reduc-

ing the achievable improvement factor. 

9.6.4 Pulsed Doppler Processing 

In pulsed Doppler radar, nc pulses are transmitted during a coherent processing 

interval (CPI). The processor combines the returns from np = nc  nf pulses (after 

gating out a number nf of fill pulses from the beginning of the CPI, where nf varies 

from 0 to some fraction of nc) to form a bank of np filters. The filter gains may be 

fixed or adjusted by a CFAR process to adapt the response to exclude (or reduce 

to noise level) the receiver output over the clutter spectrum. It is customary to 

describe the performance of the pulsed Doppler filter in terms of its clutter atten-

uation CA. 

There is considerable variety in the velocity response of the PD processor, but 

in general it can be described as having the following properties: 
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 A rejection notch with voltage response H0 << 1 and width v m/s, centered 

at or near v = 0; 

 A transition region on each side of the notch of width v, over which re-

sponse varies from H0 at v = 0.5v to H = 0.5 at v = (0.5v + vb/np), and to 

unity at v =(0.5v + 2vb/np); 

 An full-response region in which response remains at unity out to v =0.5vb;  

 Repetition of this response at intervals vb over the receiver bandwidth; 

 Ability to adaptively shift the center of the clutter spectrum to the center of 

the notch. 

The clutter attenuation CA is usually defined as 

 i

o

C
CA

C
  (9.81) 

where Co is the output power of the filter whose voltage response H(v) = 1 over 

the frequencies of intended targets: 
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oC W v H v dv





     (9.82) 

Figure 9.13 shows an idealized response H(v), with the notch and adjacent re-

sponse regions for a clutter spread v = 1 m/s. Notches for np = 16 and 8 pulses are 

shown that obtain CA = 40 dB with a blind speed vb = 60 m/s. Notch widths are 
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Figure 9.13  Clutter spectrum (dash-dot line) with v = 1 m/s, and Doppler filter responses H(v) for  

blind speed vb = 60 m/s, CA = 40 dB with np = 16 pulses (solid line) and 8 pulses (dashed line). 
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v = 1.1 m/s for np = 8 and 3.1 m/s for np = 16. The sharper response obtained 

with 16 pulses reduces the width of the transition region, in which the response 

rises from the notch depth to 6 dB. In this case np = 16 gives acceptable target 

response over 82% of the blind speed, as opposed to 73% for 8 pulses. Adequate 

clutter attenuation would be available for blind speeds as low as 20 m/s, but the 

lost fraction of target response would increase, significantly reducing the probabil-

ity of target detection.  

In practice, the idealized response is approximated using a bank of Doppler 

filters such as shown in Figure 9.14, where several filters containing significant 

clutter are desensitized (e.g., by range-cell-averaging CFAR) to form a deep 

notch. Weighting of the inputs holds the filter sidelobes below the level of the 

rejection notch. The response envelope of the sensitive filters forms the target 

detection region, in which dips between filters introduce a small filter straddling 

loss (see Section 10.2.5). The width of the transition region on each side of the 

notch is approximately equal to the filter spacing vb/np, while the 6-dB width of 

an individual filter is twice that spacing. 

The conventional definition for pulsed Doppler clutter attenuation given by 

(9.81) and (9.82) differs from that of MTI, in which the improvement factor is 

defined using a normalized response     ,H v H v G  as in (9.63). The differ-

ence is small in most cases. For example, response of Figure 9.12 gives 

0.82 0.84 dBG    for 16 pulses and 0.73 1.4 dBG     for 8 pulses. A more 

useful measure of pulsed Doppler performance is the normalized clutter attenua-

tion CA, equal to the improvement factor Im given by (9.65) and given by 

CA CAG  . The 0.8–1.4 dB difference in the case illustrated can be neglected, 

but the different definitions should be kept in mind for cases where G is signifi-

cantly less than unity. 
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Figure 9.14  Doppler response formed from 16-point Fourier transform filter bank. 



 Clutter and Signal Processing 351 

 

The fraction of velocities within each blind-speed interval with acceptable 

target response (above 6 dB) is 
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1 1t v v
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 (9.83) 

The clutter attenuation available in a pulse Doppler filter bank is directly related 

to the ratio of blind speed and the fraction of the velocity response that are al-

lowed to fall below the 6 dB level. Figure 9.15 shows this relationship for a clut-

ter spread v = 1 m/s, with two blind speeds and 16 and 8 pulses. The curves may 

be applied to other cases with the same ratios of blind speed to clutter spread. 

From Figure 9.15 it can be seen that CA = 40 dB results in the loss of 14% to 

18% of potential target velocities with 16 pulses, for 60 < vb/v < 100, and 24% to 

27% of velocities with 8 pulses. These fractions are increased if greater CA is 

required, or reduced for increased vb/v and numbers of pulses. They may be re-

duced and possibly eliminated, except for the zero-velocity region, through use of 

PRF diversity on a group-to-group basis [2, pp. 243–245], if the beam dwell pro-

vides adequate time for exchange of two or more pulse groups. 

Further limitations in pulsed Doppler processor performance are similar to 

those described for MTI in Section 9.6.3. 
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Figure 9.15  Clutter attenuation available as a function of fraction of velocity response below 6 dB,  
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9.6.5 Clutter Maps 

A significant contribution of modern digital processing is the clutter map, which 

stores information on the level of input echoes in each small region in the radar 

coverage (ideally, each radar resolution cell), averaged over several antenna scans. 

Introduced originally by engineers at Lincoln Laboratory [30] as part of the so-

called moving target detector (MTD), the clutter map is included in many modern 

signal processors. One map function is to control the receiver gain to preserve 

linearity in cells containing strong clutter, holding the echoes to the level at which 

the Doppler processing can suppress the output to the average noise level of the 

system. This avoids the need for threshold control based on both the average and 

variance of clutter within a range-cell-averaging CFAR detection circuit (see Sec-

tions 10.2.5 and 10.2.6) with the accompanying loss.  

A second function of the clutter map is to select the processing mode to max-

imize detection probability as the clutter background changes (especially over 

land clutter). In cells containing only thermal noise, the signal is allowed to by-

pass the Doppler processor, providing detection of targets with radial velocities 

near zero or other blind speeds. Since targets moving tangentially to the radar pass 

from one resolution cell to the next without substantially affecting the average 

stored in the map, they are not suppressed by the processor. The map replaces the 

older procedure of manually selecting regions to which Doppler processing is ap-

plied (e.g., sector gating of MTI or normal video processing). 

The potential exists for generalizing the mapping process to adapt the pro-

cessing paths to different types of clutter and other interference. By using the re-

cent history of the interference environment it is possible to improve the perfor-

mance of adaptive processes that would otherwise be forced to rely on instantane-

ous response to interference that varies in time and spatial coordinates. 

9.7 SUMMARY OF CLUTTER AND SIGNAL PROCESSING 

Clutter can be described as originating from a surface, with RCS c = Ac
0
; from a 

volume, with RCS c = Vcv; or from a discrete object with a specified c. The 

terms 
0
 and v are the clutter reflectivities. In each case, the power received by 

the radar is proportional to the product cFc
4
 of RCS and a clutter pattern-

propagation factor. The factor Fc is the result of interaction of the antenna voltage 

pattern and a clutter propagation factor Fc that can be expressed separately as a 

function of the path geometry and radar wavelength. 

Five regions contributing surface clutter differ primarily by the nature of their 

pattern-propagation factors: 
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1. Near region, in which Fc  1 and is determined by the antenna elevation pat-

tern; 

2. Interference region, in which Fc varies as a result of vector combination of di-

rect and reflected rays; 

3. Intermediate region, in which Fc depends on both interference and diffrac-

tion, 

4. Diffraction region, in which Fc = Fd, the propagation factor for smooth-

sphere or knife-edge diffraction; 

5. Zenith region, in which the beam of an airborne radar encounters specular re-

flection from tilted facets on the surface. In this region a specular component 


0
f is defined, Fc  1, and the antenna pattern is applied to form the average of 


0
f over the illuminated area. 

Measurements of surface clutter are commonly reported as representing 
0
, 

but in fact are 
0
Fc

4
, requiring the pattern-propagation factor applicable to the 

measurement system be evaluated and adjusted before the data are applied to es-

timate the surface clutter for a radar whose performance is to be estimated. First-

order models of sea, land, and discrete clutter were presented in this chapter, con-

sidering the propagation effects on reported data. Models of precipitation clutter 

were presented that are relatively well defined as a result of extensive work in 

radar meteorology. A chaff model is taken from the electronic warfare literature. 

Power spectra and amplitude distributions are modeled for different clutter 

types, as necessary to determine their effects on signal processing improvement 

factors and losses in target detection discussed in Chapter 10. 

Clutter improvement factors of tens of decibels are available through use of 

Doppler processing, which also introduces blind speeds at multiples of the basic 

blind speed. Multiple-pulse dwells are required to support Doppler processing. 

References 

[1] Long, M. W., Radar Reflectivity of Land and Sea, 3rd ed., Norwood, MA: Artech House, 

2001. 

[2] Barton, D. K., Radar System Analysis and Modeling, Norwood, MA: Artech House, 2005. 

[3] Blake, L. V., Radar Range-Performance Analysis, Lexington, MA: D. C. Heath, 1980; 

Dedham, MA: Artech House, 1986. 

[4] Goldstein, H., “The Fluctuations of Clutter Echoes,” Sections 6.18–6.21 in Propagation of 

Short Radio Waves, Vol. 13 in MIT Radiation Laboratory Series, New York: McGraw-Hill 

1951. Reprinted (CD ROM Edition), Norwood, MA: Artech House, 1999, pp. 550–587.  



354 Radar Equations for Modern Radar 

 

[5] Barlow, E.J., “Doppler Radar,” Proc. IRE, Vol. 37, No. 4, April 1949, pp. 340-355. Re-

printed in Radars, Vol. 7, CW and Doppler Radar, (D. K. Barton, ed.), Dedham, MA: 
Artech House, 1978. 

[6] Ward, K. D., R. J. Tough, and Simon Watts, Sea Clutter: Scattering, the K-Distribution and 

Radar Performance, London: The Institution of Engineering and Technology, 2006. 

[7] Schleher, D. C., MTI and Pulsed Doppler Radar, 2nd ed., Norwood, MA: Artech House, 

2010. 

[8] Nathanson, F. E., with J. P. Reilly and M. N. Cohen, Radar Design Principles–Signal Pro-
cessing and the Environment, 2nd ed., New York: McGraw-Hill, 1991. 

[9] Trunk, G. V., “Radar Properties of Non-Rayleigh Sea Clutter,” IEEE Trans. on Aerospace 

and Electronics Systems, Vol. AES-8, No. 2, March 1972, pp. 196–204. Reprinted in Ra-
dars, Vol. 5, Radar Clutter, (D. K. Barton, ed.), Dedham, MA: Artech House, 1975.  

[10] Billingsley, J. B., Low-Angle Radar Land Clutter–Measurements and Empirical Models, 

Norwich, NY: Wm. Andrew Publishing, 2002. 

[11] Ayasli, S., “Propagation Effects on Radar Ground Clutter,” IEEE Radar Conf., Los Ange-

les, CA, March 12–13, 1986, pp. 127–132. 

[12] Barton, D. K., “Land Clutter Models for Radar Design and Analysis,”, Proc. IEEE, Vol. 73, 
No. 2, February 1983, pp. 198–204.  

[13] Krason, H. and G. Randig, “Terrain Backscattering Characteristics at Low Grazing Angles 

for X- and S-band,” Proc. IEEE, Vol. 54, No. 12, December 1966, pp. 1964–1965 Reprint-
ed in Radars, Vol. 5, Radar clutter, (D. K. Barton, ed.), Artech House, 1975, pp. 287–288. 

[14] Ayasli, S., “SEKE: A Computer Model for Low Altitude Radar Propagation Over Irregular 

Terrain,” IEEE Trans AP-34, No. 8, Aug 1986, 1013–1023.  

[15] Fishbein, W., S. W. Gravelein, and O. E. Rittenbach, “Clutter Attenuation Analysis,” Tech-

nical Report ECOM-2808, U.S. Army Electronics Command, Ft. Monmouth, NJ, March 

1967. Reprinted in MTI Radar, (D. C. Schleher, ed.), Dedham, MA: Artech House, 1978, 
pp. 331–354. 

[16] Edgar, A. K., Dodsworth, E. J., and Warden, M. P., “The Design of a Modern Surveillance 

Radar,” IEE Conf. Pub. No. 105, Radar-73, October 1973, pp. 813. Reprinted in Radars, 

Vol. 5, Radar clutter, (D. K. Barton, ed.), Artech House, 1975, pp. 51–56. 

[17] Ward, H. R., “A Model Environment for Search Radar Evaluation,” IEEE Eascon Record, 

1971, pp. 164171. Reprinted in Radars, Vol. 5, Radar clutter, (D. K. Barton, ed.), Artech 

House, 1975, pp. 43–50. 

[18] McEvoy, W. J., Clutter Measurements Program: Operations in Western Massachusetts, 
Mitre Corp. Rep. MTR-2074, March 1972, DDC Doc. AD742297.  

[19] McEvoy, W. J., Clutter Measurements Program: Operations in the Metropolitan Boston 

Area, Mitre Corp. Rep. MTR-2085, March 1972, DDC Doc. AD 742,298.  

[20] Vaughn, C. R., “Birds and Insects as Radar Targets  A Review,” Proc IEEE, Vol. 73, No. 

2, February 1985, pp. 205–227. 

[21] Moon, J. R., “A Survey of Bird Flight Data Relevant to Radar Tracking Systems,” IEE 

Radar-2002, Edinburgh, October 1517, 2002, pp. 8084. 



 Clutter and Signal Processing 355 

 

[22] Moon, J. R., “Effects of Birds on Radar Tracking Systems,” IEE Radar-2002, Edinburgh, 

October 1517, 2002, pp. 300304. 

[23] Greving, G., and R. Mundt, “The Radar Cross Section and Wind Turbines–Definition and 

Effects of the Ground and Finite Distances,” Proc. 2011 International Radar Symposium, 

September 7–9, 2011, pp. 803–808. Microwaves, Radar and Remote Sensing Symposium 
2011, 25–27 August 2011, pp. 321–326. 

[24] Sekine, M. et al., “On Weibull Distributed Weather Clutter,” IEEE Transactions on Aero-

space and Electronic Systems, Vol. AES-15, No. 6, November 1979, pp. 824–830. 

[25] Doviak, R. J., and D. S. Zrnić, Doppler Radar and Weather Observations, New York: 

Academic Press, 1993. 

[26] Schleher, D. C., Electronic Warfare in the Information Age, Norwood, MA: Artech House, 
1999. 

[27] Raemer, H. R., Radar Systems Principles, Boca Raton, FL: CRC Press, 1997. 

[28] Shrader, W. W., and V. Gregers-Hansen, “MTI Radar,” Chapter 2 in Radar Handbook, (3rd 
ed.), M. I. Skolnik, ed., New York: McGraw-Hill, 2008. 

[29] Ward, H. R., “The Effect of Bandpass Limiting on Noise with a Gaussian Spectrum,” Proc. 

IEEE, Vol. 57, No. 11, November 1969, pp. 2089–2090. 

[30] Cartledge, L., and R. M. O’Donnell, Description and Performance Evaluation of the Mov-

ing Target Detector, MIT Lincoln Laboratory Project Report ATC-69, March 8, 1997. 





 357 

CHAPTER 10 

Loss Factors in the Radar Equation 

The radar equation often produces an inaccurate estimate of radar detection range, 

even in the benign environment of thermal noise. Blake’s formulation is an excel-

lent start, and his rigorous treatment of receiver noise, atmospheric effects, and 

propagation factors reduces the opportunity for error in those terms of the equa-

tion. Other areas still remain the source of persistent errors in the range estimate: 

the loss factors that are either listed separately in the equation or implicit in the 

detectability factor and other radar parameters. This chapter discusses the many 

loss factors that must be evaluated if the detection range is to be estimated accu-

rately.  

The term loss may be defined in many ways, but it refers here not only to the 

dissipation of energy in a resistive circuit element but to any factor in the radar or 

the external environment that prevents the signal from being received and used to 

full effect. The system loss L is included in (1.16), (1.18), and (1.19) without de-

tailed definition. Most radar texts include one or more loss actors, but leave it to 

the reader to identify and evaluate them. There is no standard procedure that en-

sures adequate accounting for losses, although [1] devotes a chapter to the loss 

budget. 

Losses affect radar in different ways. Some reduce the signal energy received 

by the radar, some reduce the fraction of that energy passed to the detection de-

vice, and others reduce the response to target echoes, increasing the received en-

ergy required to obtain the desired detection performance. Some are identified 

specifically (e.g., the transmission line loss Lt in the Blake chart (Figure 1.1), 

while others can be identified as components of a specified term (e.g., components 

of the miscellaneous loss Lx, which increases the effective detectability factor Dx 

in the radar equation), or as changes in other terms from values that might be ex-

pected (e.g., antenna losses). 
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Some loss factors, denoted by the symbol L, increase the denominator of the 

equation, while others are expressed as voltage gain factors F < 1 in the numera-

tor. The latter form is preferred when conditions can lead to F = 0. In the follow-

ing discussions, symbols for loss factors use a subscript to identify their source, 

modified with an additional subscript t for the transmitting path, r for the receiv-

ing path, c when applied to received clutter energy, and j for received jammer en-

ergy.  

10.1 REDUCTION IN RECEIVED SIGNAL ENERGY 

Components of the loss L1, included in (1.7)(1.14) to describe reductions in re-

ceived RF energy, are identified in this section. 

10.1.1 Terms Specified in the Radar Equation 

10.1.1.1 Transmission Line Loss Lt 

The loss Lt is listed specifically in the Blake chart (Figures 1.1, 1.2) and in (1.20), 

(1.22), (1.23), and(1.26). It is defined as the ratio of power output of the transmit-

ter (either peak or average) to that delivered to the antenna terminal at which Gt is 

defined. It includes dissipative losses listed in Table 10.1 and the effects of any 

impedance mismatch that reflects power back to the transmitter.  

Table 10.1  Components of Transmission Line Loss 

Component Typical Loss (dB) Notes 

Waveguide or coaxial line 0.2 See Figure 10.1 

Rotary joint(s) 0.1  Possibly two or three joints 

Duplexer 0.5  Ferrite or gas device 

Harmonic filter 0.2  Used with magnetron or CFA 

Directional coupler 0.05   

Switch 0.05  Used with dummy load 

Mismatch 0.1 Typical, for VSWR = 1.4 

Loss coefficients for coaxial lines and waveguides are shown in Figure 10.1. 

In arrays using transmit/receive modules at each element, Lt may consist only of 

the duplexer and mismatch losses. The mismatch loss is given by 
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where  is the reflection coefficient and VSWR is the voltage standing-wave ratio. 

In an electronically scanned phased array, (6.35) expresses the reflection co-

efficient  as a function of scan angle  from broadside and the exponent  of the 

element gain pattern. From this, the varying loss over the scan sector is 

    
1

2 1

01 cosL




       (10.2) 

10.1.1.2 Atmospheric Absorption L 

The loss L is included specifically in the Blake chart (Figures 1.1, 1.2) and in 

(1.20), (1.22), (1.23), and (1.26). It is defined as the ratio of energy that would be 

received on a radar path through a vacuum to the actual received energy, exclud-

ing the lens-loss effect, and is discussed in Sections 7.2 and 7.3. There is no sig-
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Figure 10.1  Loss versus frequency for (a) rigid coaxial transmission line and (b) rectangular wave-
guide, plotted using data from [2]. 
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nificant ionospheric absorption at frequencies in the radar bands, but a dispersive 

effect may introduce a loss described in Section 7.5.5. 

10.1.1.3 Pattern-Propagation Factor F 

The pattern-propagation factor F is discussed in detail in Chapter 8.  

10.1.1.4 Polarization Factor Fp 

The polarization factor Fp is the ratio of the field intensity received by the polar-

ized receiving antenna to the field intensity that would be received in a free-space 

environment if the receiving antenna polarization were matched to target reflec-

tion at the transmitted polarization. It is entered as a constant that depends on an-

tenna polarization and the shape of the echo source. 

Target cross section  is normally specified for a linear (H or V) transmitted 

and received polarization. Values of the polarization factor for typical targets and 

for rain are shown in Table 10.2. The polarization factor for snow is closer to uni-

ty than for rain, because the snowflakes depart more from a spherical shape. 

The polarization factor also describes the effect of ionospherically induced 

Faraday rotation when the antenna is linearly polarized, as discussed in Section 

7.5.4. In this case, the loss varies with the ionospheric path, and must be treated as 

a statistical factor, as described in Section 10.2.1. 

Jammer antennas are often linearly polarized at 45 or 135 to provide a po-

larization factor F
2
pj = 3 dB against radars using H, V, LCP, or RCP (see Sections 

3.7 and 3.8). If the victim radar uses an adaptively polarized receiving antenna, 

 

Table 10.2  Polarization Factor 

Polarization Target Fp 

(dB) 

Rain Fpc 

(dB) Transmit Receive 

H H 0 0 

H V 10 15 

V V 0 0 

V H 10 15 

RCP RCP 3 20 

RCP LCP 0 0 

LCP LCP 3 20 

L R 0 0 

H or V RCP or LCP 3 3 

RCP or LCP V or H 3 3 
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separate jamming transmitters feeding any two orthogonally polarized antennas 

are necessary to ensure uniform F
2
pj = 3 dB over all possible receiving polariza-

tions. 

10.1.2 Components of Range-Dependent Response Factor Frdr 

The factor Frdr, introduced in (1.26), includes five range-dependent components, 

not separately listed and usually omitted in the radar equation, that reduce re-

ceived energy. 

10.1.2.1 Tropospheric Lens Factor Flens 

The component Flens of the range-dependent response factor Frdr is discussed in 

Section 7.4. It may be replaced by the lens loss Llens = 1/Flens in the denominator, 

but should remain separated from the atmospheric absorption because only the 

latter affects the system noise temperature. 

10.1.2.2 Sensitivity Time Control Factor Fstc 

STC is applied at RF or early in the receiver to reduce the dynamic range required 

of subsequent receiver stages. The receiver power gain to echoes within some 

selected range Rstc varies as 
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relative to the full receiver gain, and Xstc  4 is an exponent selected to maintain 

target detectability for R < Rstc. When the gain control is applied prior to the sig-

nificant sources of receiver noise, the signal-to-noise ratio is assumed to vary as 

F
2
stc relative to the value that would be obtained with full receiver gain. 

A more complicated relationship may be derived in cases where significant 

noise originates prior to the gain-controlled stage. STC is used only in low-PRF 

radar, and its effect is illustrated in Figure 1.5. It should be noted that a target at 

constant altitude, flying above the antenna mainlobe into a region covered by the 

csc
2
 extension of the elevation pattern, closes on the radar with constant SNR in 

the absence of STC. To prevent the STC factor from dropping the echo below the 

detection threshold, the upper coverage may be provided by patterns in which the 

exponent of the csc function is less than two, as illustrated in Figure 2.1. 
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10.1.2.3 Beam-Dwell Factor Fbd 

The factor Fbd is caused by beam motion occurring between transmission of a sig-

nal and reception of its echo. It varies with the target range R, and appears in sys-

tems that scan a beam continuously at a very rapid rate, and in those that step the 

beam to a new position prior to arrival of the echo from R.  

For a radar scanning continuously through one beamwidth in time to, with a 

target at range R whose signal time delay td = 2R/c, the beam-dwell factor is 
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where 

 Lp  = beamshape loss; 

   = td/to = tds/3 = fractional beamwidth scanned during the delay; 

 s  = scan rate; 

 3  = beamwidth in the scanned coordinate; 

 f () = antenna voltage pattern.  

The beamshape loss is included as a multiplier in (10.4) to normalize Fbd to unity 

for  << 1. For example, the beam-dwell factor for a Gaussian beam pattern with 

td = 0.5to is F
2
bd = 1.5 dB. This loss is absent from electronically scanned arrays 

that rapidly step the beam between dwells in each position after receipt of all de-

sired echoes. 

10.1.2.4  Frequency Diversity Factor Ffd 

In frequency diversity, the frequency is changed between transmission of succes-

sive groups of nfd pulses. The retuned receiver has zero response, Ffd = 0, on the 

final nrt echo pulses of each group from targets at range R > ntrRu. With frequency 

agility, in which the radar frequency is changed from pulse to pulse, Ffd = 0 on all 

echoes from previous transmissions. This eliminates detection of clutter and re-

sponsive jammers as well as range-ambiguous targets. The effect does not appear 

in the standard radar equation, but should be included in computer programs that 

might otherwise include the rejected energy components from targets and interfer-

ence lying beyond the unambiguous range. In most applications, this is considered 

a desirable feature that eliminates interference rather than a “loss” factor. 

10.1.2.5 Eclipsing Factor Fecl 

Eclipsing occurs when the apparent time delay t d = td(modulo tr) allows the echo 

pulse to overlap either the immediately preceding or following transmitted pulse. 
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Figure 10.2 shows in part (a) two successive transmitted pulses separated by the 

pulse repetition interval PRI = tr, and an echo pulse with delay t d = 0.5tr. The sig-

nal is subject to eclipsing for delays such that|0.5tr  td| > 0.5tr  . Part (b) of the 

figure shows the fraction of the echo pulse that passes uneclipsed. That fraction is 

given by 
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where Du = /tr is the duty cycle.  

For an uncoded rectangular pulse, the eclipsed pulse energy is Hecl times its 

uneclipsed value, and the mismatched filter passes that fraction with efficiency 

H
2
ecl, resulting in an eclipsing factor given by: 

    2 3

ecl ecld dF t H t   (10.6) 

A similar factor applies to waveforms using pulse compression. 
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Figure 10.2  Eclipsing: (a) transmitted pulses with echo midway in PRI, (b) uneclipsed pulse fraction 
Hecl. 



364 Radar Equations for Modern Radar 

 

In low- and medium-PRF radar using constant PRF, the deterministic factor 

given by (10.6) can be applied as a function of target range, producing identifiable 

regions adjacent to a transmitted pulse where Pd drops toward zero (see Figure 

1.4). In high-PRF radar, the target passes rapidly through the eclipsed regions, and 

PRF diversity during each beam dwell is commonly used to shift those regions to 

preserve some of the target returns. For that case, and for other radars in which Pd 

is to be averaged over pulse groups at different PRFs, a statistical loss factor (Fig-

ure 10.4) is found using the procedure given in Section 10.2.1. 

10.1.3 Losses Included in System Noise Temperature 

Chapter 6 discussed the calculation of system noise temperature Ts. In addition to 

the receiver noise figure Fn, the three RF loss components listed below contribute 

to Ts. 

10.1.3.1 Receiving Line Loss Lr 

The loss Lr contains many of the components listed for Lt in Table 10.1, excluding 

the possible transmitter switch that connects to the dummy load. A bandpass filter 

to reduce out-of-band interference replaces the harmonic filter needed in some 

transmitters. An additional loss of 0.2–0.4 dB is often contributed by a solid-state 

limiter that protects the low-noise receiving amplifier. 

10.1.3.2 Antenna Dissipative Loss La in Noise Temperature 

The loss La varies significantly with antenna type, but may include the compo-

nents listed in Table 10.3. The antenna mismatch for an electronically scanned 

array may greatly exceed that of a mechanically scanned antenna or an array at 

broadside, as shown in Section 6.3.5. Values shown in the table apply for an ele-

ment pattern Ge() = cos
3/2
. 

10.1.3.3 Atmospheric Absorption Loss L in Noise Temperature 

This loss, applied in calculating system noise temperature in Section 6.3.1, is dis-

cussed in Sections 7.2 and 7.3. 

10.1.4 Losses in the Search Radar Equation 

10.1.4.1 Cosecant Pattern Loss Lcsc 

Extension of the elevation coverage above the full-range coverage sector 1 of the 

mainlobe (see Figure 2.1) reduces the antenna gain. In the standard form of the 

radar equation, this appears as reduced Gt, Gr, or both, but in the search radar 
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equation the corresponding loss Lcsc appears in both the solid angle s of search 

coverage and as a component of the search loss Ls. Losses for the csc
2
 and csc 

patterns are given in (2.11) and (2.12) and shown in Figure 2.2, along with those 

for intermediate cases. 

10.1.4.2 Elevation Beamshape Loss Lpe  

The loss Lpe appears as a component of search loss Ls in the search radar equation 

for 2-D radar. Figure 2.1 shows a fan beam that provides the specified full-range 

coverage at elevation angle 1 = sin
1

Hm/Rm. The half-power beamwidth e re-

quired for this coverage exceeds the upper angle of full-range coverage 1 by the 

factor Lpe  1.5, reducing the gain Gt relative to that assumed in derivation of the 

search radar equation. The same factor must also be included in selecting the 

height of the antenna, reducing the aperture area A relative to that required for a 

given wavelength if the elevation beamwidth were set to 1. An approximation for 

this loss as a function of the ratio e/1 is 
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10.1.4.3 Antenna Dissipative Loss La in Search Radar Equation 

Section 2.6.1 discusses the antenna gain assumptions made in derivation of the 

search radar equation. No dissipative loss within the antenna is included in those 

Table 10.3  Components of Antenna Dissipative Loss 

Location Component Typical Loss (dB) 

Feed system Feed horn 0.1 

 Waveguide series feed 0.7  

 Waveguide parallel feed 0.4 

 Stripline series feed 1.0 

 Stripline parallel feed 0.6 

Phase shifter Nonreciprocal or Faraday rotator 0.7 

 Reciprocal ferrite 1.0 

 Diode (per bit) 0.4 

Array Mismatch (no electronic scan) 0.2 

 Mismatch (electronic scan 60) 1.7 

Exterior Radome 0.5–1.0 
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assumptions, and hence La
2
 must be included as component of Ls to account for the 

loss in transmission and reception, in addition to inclusion of La in system noise 

temperature calculation. 

10.1.4.4 Pattern Constant Ln  

Section 2.6.1 discusses also the need to include this factor as a component of Ls to 

correct for the fact that Gt < 4/ae in actual antennas (as opposed to the rectan-

gular beam used in derivation of the search radar equation). The loss can be calcu-

lated from the beamwidth factor K and aperture efficiency a as 
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Values Ln = 1.16–1.28 dB apply to all antennas, with additional spillover loss 

 0.5 dB for lens or reflector antennas and blockage loss 0.6–1.2 dB for reflector 

antennas with feeds centered in front of the reflector. 

10.1.4.5 Antenna Illumination Loss L in Search Radar Equation 

When the physical aperture A is used in the search radar equation (2.7) or (2.8), 

the search loss Ls must include the illumination loss, to be discussed in Section 

10.1.5.1. That loss is applied only once to Ls, because the effect of illumination 

taper on the transmitting gain is included in the factor Ln. 

10.1.4.6 Scan Distribution Loss Ld  

The scan distribution loss describes the loss in integration performance when per-

forming two or more scans of the search volume during the search time ts. The 

detection requirements are met with a cumulative probability of detection rather 

than by Pd in a single scan. The loss is defined as the ratio of the SNR required 

when cumulative detection is performed over m scans with n/m pulses per scan to 

that required for a single scan with n pulses.  

Marcum [3, pp. 13–14] discusses the effect of using m groups of separately 

integrated pulses to achieve detection. He states that “it is always best for [m] to 

equal 1.” That observation is correct for a steady target under most conditions, but 

for fluctuating targets it may be possible to obtain better performance using two or 

more scans within the allocated search time.  

The loss is calculated using the expression for binary integration loss (Section 

10.2.5.1) with m = 1, modified by adjustment in other losses that are dependent on 

the single-scan Pd. For example, beamshape loss Lp and eclipsing loss Lecl increase 
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steeply with increasing Pd. The method of calculating Ld is to define the effective 

detectability factor Dxm(m) as 

      1 1, ,
kxm z

k

D m D P n m L P n m   (10.9) 

where 

D(P1,n/m)  =  basic detectability factor for detection probability P1 using in-

tegration of n/m pulses; 

P1  =  1  (1  Pc)
1/m

; 

Pc  =  desired probability of detection after m scans; 

Lz(P1,n/m)  = statistical loss component for processing n/m pulses to 

achieve P1; 

k  = number of statistical loss components contributing to Dx. 

The scan distribution loss is 
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This may result in Ld < 1, indicating a time-diversity gain for use of m scans of the 

volume during ts. 

10.1.4.7 Other Losses in Search Radar Equation 

The other antenna losses discussed in Section 10.1.5.3 are also included in the 

search radar equation both for the transmitting and receiving directions, doubling 

their decibel contributions to Ls. In addition, all the losses contributing to Dx, as 

discussed below in Section 10.2, are included as components of Ls, since the de-

nominator of that equation uses the detectability factor D0(1) for a single pulse on 

a steady target. 

10.1.5 Losses Included in Antenna Gain 

Several loss terms appear as reductions in antenna gains, but are listed here to 

ensure that they are included either there, in the pattern-propagation factor, or 

added separately to the radar equation. 

10.1.5.1 Antenna Illumination Loss L  

The antenna gains Gt and Gr are specified in the radar equation. They can calcu-

lated from the physical aperture area A using 



368 Radar Equations for Modern Radar 

 

 
0 2

4
a a

A
G G


   


 (10.11) 

where G0 is the aperture gain for uniform illumination and a is the aperture effi-

ciency. The illumination efficiency i is one component of aperture efficiency, 

and the illumination loss is defined as L = 1/i. This is shown in Figure 10.3 as a 

function of the sidelobe level, for rectangular apertures that use the same illumina-

tion taper in both coordinates and for elliptical apertures. For different illumina-

tions, the loss is the geometric mean of the two losses. The Hansen illumination 

refers to the one-parameter circular illumination discussed in [4, pp. 107–111]. 

The circular illumination function with the steepest increase in loss has the form: 

    21 4
n

g r r   (10.12) 

as tabulated in [5, p. 264]. This is representative of the illuminations produced by 

simple horn feeds for reflector or lens antennas. 

10.1.5.2 Antenna Dissipative Loss La in Antenna Gain 

When the antenna gains are specified, it is assumed that the efficiency a has in-

cluded the dissipative loss component  = 1/La. 
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(a)  Rectangular apertures (b)  Elliptical apertures 

Figure 10.3  Two-coordinate illumination loss as a function of sidelobe level for different families of 
tapered illumination. 
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10.1.5.3 Other Losses in Antenna Gain 

The aperture efficiency a is assumed to include also the following losses: 

 Spillover loss:  0.5 dB for in a lens or reflector antenna;  

 Blockage: 0.6–1.2 dB for a reflector antenna; 

 Dimensional tolerance: rms phase errors , describing deviations of the aper-

ture by a distance as from its assumed form, cause a loss given by  

  2 2
exp exp as

as s asL k

 
    

 
 (10.13) 

where kas = 2 for reflector surfaces or 1 for planar arrays and lens surfaces. 

When the feed side and the radiating side of a lens have the same departure 

from their assumed form (e.g., bending of the entire structure), kas  0. 

 Signal bandwidth loss: While reflector and metallic lens antennas normally 

have bandwidths in excess of the signal bandwidth B, array antennas have 

limited bandwidth that can cause loss in gain for wideband signals, especially 

when scanned off broadside. This subject is discussed in [1, pp. 170–172.]. 

 Array phase error loss: the loss L = exp(
2
), where  is the rms phase error 

of the feed and phase shifters.  

 Phase-shifter quantization loss: quantization of phase-shift control to m bits 

causes a loss 

  
2

2

2
exp exp

3 2
q q m

L 

 
    

 
 (10.14) 

 Antenna mismatch loss: the loss expressed by (10.1) applies also to antenna 

mismatch. 

 Scan loss: the gain of an array scanned off broadside by the angle  is re-

duced by the element factor 

      2 coseG f      3.3 (10.15) 
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where 1 <  < 2 (usually 1.5). When the radar equation is applied to targets 

at a specific off-broadside angle, the antenna gains are reduced by this loss. It 

also applies with   1 to electrically fixed arrays constructed of slotted 

waveguide, from which the beam is squinted from broadside by a frequency-

dependent angle . When the radar equation uses the broadside gains, and de-

tection performance is averaged over a sector extending s from broadside, a 

scan loss is defined as the increase on on-axis SNR required to maintain the 

specified detection probability This is included as an increase in required sig-

nal energy (see Section 10.2.1). 

 Cosecant pattern loss: the loss Lcsc described in Section 10.1.4 reduces the an-

tenna gains Gt and Gr in a 2-D radar, and Gt in a stacked-beam 3-D radar. 

 Loss in water film: Most radar antennas pass the transmitted and received 

signals through a dielectric window or covering that separates the antenna or 

feed components from the environment. Loss in this dielectric material can be 

minimal, except in radomes that must withstand wind forces (see Table 10.3), 

but may increase when a water film is formed by condensation or precipita-

tion. Table 10.4 shows losses calculated for different film thicknesses at S- 

and Ku-bands. Water films on a reflector surface are seldom thick enough to 

cause loss, as the electric field at the surface falls to zero and is incapable of 

transferring energy to the water unless the film thickness is greater than hun-

dredths of a wavelength. 

10.2 INCREASES IN REQUIRED SIGNAL ENERGY 

10.2.1 Statistical Losses 

Some loss factors do not appear directly in the radar equation, but instead cause an 

increase in the effective detectability factor Dx that represents the on-axis energy 

ratio required to achieve the desired detection probability Pd. Some of these are 

Table 10.4  Losses in Water Films 

Film Thickness (mm) Radome Loss (dB) Reflector Loss (dB) 

 f = 3.7 GHz f = 16 GHz f = 3.7 GHz f = 16 GHz 

0.05  3.2*   

0.13 1.1 5.3  0.01 0.03 

0.25 1.1 5.3  0.01 0.2 

0.38 4.2 10.9  0.01 0.9 

0.5 5.6 12.3  0.01 2.7 

Note: Theoretical data from [6]. * indicates experimental data reported in [7]. 
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constant, but others are statistical losses, in that their value depends on averaging 

detection probability Pd over a variable z that represents target position in one of 

the four dimensions of radar space (or in polarization angle of the echo). A loss Lz 

is defined in each case as the increase in input signal-to-noise energy ratio E/N0 

that is required to maintain the desired Pd as z varies between specified values. If 

the required energy ratio for the idealized system is D, the requirement increases 

to LzD when Lz is present. Each of the several components Lz is calculated for the 

desired Pd, and the loss product is applied to obtain the effective detectability fac-

tor appearing in the denominator of (1.20), (1.23), and similar equations: 

 x z

z

D D L   (10.17) 

The general procedure for calculation of statistical loss is to express the re-

sponse of the radar system H(z) as the voltage ratio of output signal to a reference 

value that would apply if the sensitivity to z were absent. The signal-to-noise 

power ratio so applied to the detection device is then 

    2

o os z s H z   (10.18) 

where so is the SNR in the absence of the loss. 

Theoretical probabilities of detection pd(so) for specified target models are 

given in Chapter 4. In the presence of loss pd is reduced to 

      2

d d o d op z p s z p s H z          (10.19) 

The detection probability when averaged over the possible values of z is 
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 (10.20) 

where pt(z) is the probability that the radar and target conditions lead to an echo at 

position z.  

To calculate Lz, values of so in (10.20) are varied until the detection require-

ment is met: Pav = Pd, at a value sd 0(Pd). This gives Lz as 
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where the root function is the value of so that meets the equality in the brackets. In 

general there is no closed-form solution to (10.21), but computer programs are 

available to find this root for arbitrary pt(z), H(z), and target statistics. The corre-

sponding range-dependent response factor is F
2
rdr = 1/Lz. 

10.2.1.1 Eclipsing Loss Lecl 

The eclipsing loss is derived statistically from the range-dependent factor Fecl, and 

is used in the radar equation for high-PRF radar to find the range at which the 

average Pd for echoes whose apparent delay varies with z over specified limits (see 

Section 10.1.2.5). The factor Fecl(t d) replaces H(z) in (10.21), with integration over 

0 < t d < tr. Echoes are normally modeled as uniformly distributed over the PRI: 

pt(z) = 1.  

Figure 10.4 shows Lecl when averages of Pd are taken for Case 1 targets dis-

tributed uniformly within the PRI. It can be seen that high Pd leads to large losses 
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Figure 10.4  Eclipsing loss as a function of detection probability for different values of duty cycle. 

Values of Lav for each duty cycle are shown by the circles near Pd = 0.2. 
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as duty cycle is increased. High cumulative probability of detection could be ob-

tained over two or more pulse groups with different PRIs, allowing reduced Pd per 

group with lower Lecl. 

This statistical loss may be compared with the loss Lecl defined as the recipro-

cal of H
3
av averaged over tr, which are shown by the circles near the lower left por-

tion of the figure. The statistical loss is greater for Pd > 0.25, and much greater for 

Pd  1. 

10.2.1.2 Faraday Rotation Loss LFar 

The Faraday rotation angle (h) varies with the total electron count along the path 

to target altitude h, according to (7.44). The response of a linearly polarized radar 

antenna to this angle can be expressed as 

  Far cosH     (10.22) 

This expression is substituted for H(z) in (10.21), and the integration is carried out 

over a region 0–m to calculate the Faraday rotation loss. Figure 10.5 shows LFar as 

a function of Pd for rotations from zero to different maximum values m. The 

worst case occurs at m = 120 where HFar < 3 dB over 67% of the interval 0 to 

m. The average loss in received power for any number of full rotations is 3 dB, 
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Figure 10.5  Faraday rotation loss for linearly polarized antenna as a function of average detection 

probability over rotation angles from zero to different values of m. The average loss in received 

power is shown by circles on each curve near Pd = 0.2. For any number of full rotations the loss 

follows the curve for m = 90. 
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but it can be seen that the statistical loss for m = 90 is greater than that average 

value when Pd > 20%. 

10.2.1.3 Scan Sector Loss Lsector 

Section 10.1.5.3 discussed the loss Lsc for the case where a specific scan angle is 

used. Where the scan is carried out over a sector in which a specified average Pd is 

to be obtained, the statistical loss procedure expression (10.21) is used over the 

limits of the scanned sector, with H() = cos
/2

() and pt() representing the prob-

ability density of target positions within the sector (normally assumed uniform). 

Figure 10.6 shows the scan sector loss as a function of Pd for different maxi-

mum scan angles m, for sectors extended over m. For comparison, the average 

loss in power over each sector is shown by circles on each line, and those values 

are exceeded for Pd > 20%. 

10.2.2 Losses in Basic Detectability Factor 

The basic detectability factor, denoted by D0,…,4 for steady and Swerling targets, is 

the theoretical value before considering beamshape, matching, and signal pro-

cessing losses. Values are calculated as shown in Chapter 4, which also extends 

the theory to the detectability factor De for targets observed with diversity. Within 

these factors are included two losses that are applied to the basic single-pulse, 
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Figure 10.6  Scan sector loss as a function of detection probability averaged over sector m. Average 

loss in power is shown by circles on each line near Pd = 20%. 
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steady-target factor D01 in deriving the factors for n-pulse integration and for fluc-

tuating targets. These losses do not appear separately in the radar equation, but are 

useful in comparing the performance of different waveform and processing op-

tions. For example, Figure 4.12 shows the variation in their sum as a function of 

the number of diversity samples, with the optimum number of samples increasing 

from one to eight with detection probability. 

10.2.2.1 Integration Loss Li 

Integration loss is discussed in Section 4.4.3, and plotted in Figure 4.9 as a func-

tion of n for different values of D01 whose detection performance is to be matched 

using the received energy ratio nD0(n).  

10.2.2.2 Fluctuation Loss Lf 

Fluctuation loss is discussed in Section 4.4.5, and plotted in Figure 4.10 for the 

Case 1 target. Section 4.4.7 discusses how the loss varies with the number of in-

dependent target samples ne included in the n integrated pulses.  

10.2.2.3 Detector Loss Cx 

In Section 4.4.2 the loss in SNR resulting from the nonlinearity of the envelope 

detector was described by the detector loss Cx, defined relative to the SNR availa-

ble from a coherent (phase sensitive) detector with an in-phase reference voltage. 

An empirical expression 

 
2.3

x

s
C

s


  (10.23) 

where s is the input SNR to the envelope detector, was found in [8] to reproduce 

with acceptable accuracy the performance of detection systems based on the out-

put of an envelope detector. This loss is included in the integration loss term, and 

need not be calculated separately. 

10.2.3 Matching and Bandwidth Losses 

Blake’s basic radar equation (1.16) includes a bandwidth correction factor Cb to 

multiply the detectability factor when nonoptimum receiver bandwidth is used. 

Subsequent forms of the equation from work of Hall and Barton replaced Cb with 

a matching loss Lm or a matching factor M for application to electronic detection. 
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10.2.3.1 Bandwidth Correction Factor Cb 

Section 1.5.4 notes that the factor Cb given by (1.17) is unsuitable for use with 

electronic detection devices. It remains useful to multiply the visibility factor V0 to 

characterize the visual detection process. The formal definition of Cb given by 

Blake [9, p. 366, Eq. (8.14)] would give the same result as the expression for 

matching loss in the following section, but the plotted value [9, p. 367, Figure 8-2] 

does not represent that result. Instead, it gives experimental values of the excess 

energy ratio required to maintain visibility of a display as receiver bandwidth is 

varied, as reported by Haeff [10]. Blake notes that the simple concept represented 

by the plots is inapplicable to radar that use “pulse bursts or other nonsimple 

waveforms.” 

10.2.3.2 Matching Loss Lm 

Section 1.4.1 presents Hall’s radar equation (1.20), in which the effective detecta-

bility factor is used to increase the basic detectability factor D(n) by five loss fac-

tors: Dx = D(n)Lm Lp L c L x L o . The matching loss Lm is defined as the ratio of peak 

output SNR of the matched filter to that of the mismatched filter, given the same 

input. It is calculated for a signal voltage spectrum A( f ) and filter response func-

tion H( f ) as 
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 (10.24) 

Figure 10.7 shows the loss as a function of the product of pulsewidth  and receiv-

er noise bandwidth Bn for an uncoded rectangular pulse with different filter types. 

Other than the (sinx)/x matched filter, the best performance is Lm = 0.5 dB ob-

tained with a Gaussian filter, which represents a cascade of several single-pole 

filters with and overall response Bn = 0.8. 

Figure 10.8 shows the matching loss as a function of time-sidelobe level for a 

weighted linear-FM waveform with different weighting functions. The curves 

follow those for illumination taper loss given in Figure 10.2(a). 
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10.2.3.3 Matching Factor M 

In Barton’s radar equation (1.23) and the accompanying modified Blake chart of 

Figure 1.2, Lm is replaced by the matching factor M. This factor includes two mod-

ifications to Lm: 

 When the receiver filter has Bn > 1 and the postdetection (video) bandwidth 

Bv  Bn/2, the matching loss Lm describes the reduction on SNR at the detec-

tion circuit. However, in many cases Bv < Bn/2 provides reduction in the noise 

leaving the receiver. The result is an effective bandwidth that is the lesser of 

Bn or 2Bv for rectangular filters, and otherwise is given by 
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Figure 10.7  Matching loss Lm as a function of product Bn for an unmodulated rectangular pulse with 

different IF filter types. From [1]. 
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Figure 10.8  Matching loss Lm as a function of time sidelobe level for a weighted linear-FM waveform 

with different weighting functions. 
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 (10.25) 

The greater noise entering the envelope detector leads to a collapsing ratio 

Bn/Beff and causes a collapsing loss Lc (see Section 10.2.5.4). The product of 

Lm from (10.25) and Lc gives the correct matching factor M, which is general-

ly less than Lm calculated from Bn alone. The difference is often small enough 

to be neglected.  

 For Beff < 1 the peak SNR is reduced according to (10.24), but the output 

pulse is broadened and fewer noise samples reach the envelope detector dur-

ing the periods when signal is absent. This reduces the false-alarm rate and 

permits increasing the false-alarm probability, reducing the threshold and the 

required detectability factor Dx relative to that calculated using Lm alone. 

Since small changes in Pfa have little effect on D, this difference is often 

small enough to be neglected. 

In most cases, use of Lm from (10.25), Figure 10.7 or Figure 10.8 is sufficient-

ly accurate for use without the extra calculations involved in finding the effective 

bandwidth and the adjustment for false-alarm probability. 

10.2.4 Beamshape Loss Lp 

The beamshape loss is the subject of Chapter 5, and applies to all radars during 

search and acquisition of a target unless the beam axis can be placed on the target 

within a small fraction of the beamwidth. In using the Blake chart or creating a 

vertical coverage chart (see Figure 1.6), the target position relative to the beam-

axis in elevation is included in the pattern-propagation factor F, and only the one-

dimensional beamshape loss appears as a multiplier of detectability factor in the 

denominator of the radar equation. However, when the search radar equation is 

used or when detection probability over a two-dimensional angle sector is calcu-

lated, the two-dimensional loss Lp2 from Sections 5.4 and 5.5 is used instead of F. 

Notations used in Chapter 5 to distinguish different beamshape losses are: 

 Lp0  =  one-coordinate loss with dense sampling; 

 Lp1  =  one-coordinate loss for general case; 

 Lp2  =  two-coordinate loss for general case; 

 Lpn  =  net beamshape loss after adjustment for beam spacing, as used in 

search radar equation; 

 LpT  =  two-coordinate loss for triangular beam grid. 
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10.2.5 Signal Processing Loss Lx 

The miscellaneous loss Lx that appears in the Blake chart consists of several com-

ponents listed below that result from signal processing that does not preserve the 

SNR at the receiver output. These are not necessarily the result of design defects, 

but may accompany steps necessary to reject false alarms from clutter and other 

interference. 

10.2.5.1 Binary Integration Loss Lb 

Binary integration uses a double-threshold system in which each of n pulses is 

applied to the first threshold to achieve probabilities of detection pd and false 

alarm pf . Outputs from the first threshold are accumulated over n pulses, and an 

alarm is issued when at least m outputs out of the n pulses are obtained. It is a sub-

stitute for video integration, and is sometimes called m-out-of-n integration.  

The probability of obtaining j outputs from the first threshold is 
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where P( j) is the probability that exactly j crossings of the threshold occur in n 

trials, each with threshold crossing probability p. The probability of an output 

alarm is 
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The output false-alarm probability is found by letting p in (10.26) be the probabil-

ity pfa that noise alone exceeds the threshold on each trial: 

 
 

 

 
 

!
1

! !

!
1 ,  1

! !

n
n j

j

f a f a f a

j m

n m
m

f a f a f a

n
P p p

j n j

n
p p p

m n m







 


  



 (10.28) 

Given the required Pfa at the integrator output, (10.28) is solved for the required 

single-pulse pfa. Then, given the single-pulse SNR, the single-pulse pd is found 

from expressions in Chapter 4 and used to find the output Pd from 
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If a requirement for Pd is given, (10.29) must be solved for the required single-

pulse pd, and the detectability factor Db(n) corresponding to pd and pfa found from 

expressions in Chapter 4. 

The range of optimum m is quite broad, lying near the value determined by 

Schwartz [11] for large n: 

 opt 1.5m n  (10.30) 

A comparison of the integration loss for optimum binary integration with the 

video integration loss Li(n) is shown in Figure 10.9. The extra loss with binary 

integration, beyond that for video integration, is the binary integrator loss, denot-

ed by Lb, and is approximately 1.4 dB for n 5. Accepting this approximation, the 

tedious processes of solving (10.29) for required single-pulse probabilities may be 

avoided by using the equations for video integration and increasing the signal pro-

cessing loss by Lb = 1.5 dB. This loss is often considered acceptable, both because 

of the saving in hardware complexity and the fact that 1-bit A/D conversion offers 

significant protection against interference from random pulses of large amplitude. 

No matter how large the interfering pulse, it can only add one to the count of first-
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Figure 10.9  Comparison of integration loss for different methods of integration (calculated for 

Pd = 0.9, Pfa = 106, D0(1) = 13.2 dB). From [1]. 
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threshold crossings. For n 2, 3, and 4 the loss rises above the curve plotted in Fig-

ure 10.9, reaching 1.6, 2.2, and 2.4 dB, respectively.  

Also shown in Figure 10.8 is the curve for binary integration with m = 1, 

sometimes called cumulative integration. When cumulative integration is per-

formed over n > 1 scan, the difference between Li for video integration and Lb for 

m = 1 is the scan distribution loss (see Section 10.1.4). 

10.2.5.2 CFAR loss Lg 

CFAR loss results from use of an adaptive threshold that reduces false alarms 

from variable or non-Gaussian interference. A typical implementation is the 

range-cell-averaging CFAR shown in Figure 10.10. The envelope-detected out-

puts of m adjacent range cells are available simultaneously from a tapped delay 

line in which the center tap represents the detection cell. The m reference taps are 

averaged to form an estimate w of the noise and interference near the target within 

the radar beam, and the ratio of the detection cell amplitude xs to this average is 

used as the video output. In effect, the threshold level Et is scaled to the estimate 

of local noise rather than to an a priori value as in previous discussions. 

The estimate of interference level as the average of m adjacent samples is 

subject to error, so the weight w applied to that average must be set higher than 

the value applicable to a perfect estimate. Hence, the threshold, varying about the 

correct estimate, is too high most of the time, reducing Pd relative to that for a 

fixed threshold at the correct level. This requires an increase in SNR, by an 

amount that is called the CFAR loss. Figure 10.11 shows that loss for single-pulse 

detection (n = 1). 

The effective number of reference samples meff in Figure 10.11 is calculated 

as follows, where m is the number of taps in Figure 10.10: 

 For m-cell averaging as in Figure 10.10: 

 meff = m, for square-law detector; 
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Figure 10.10  Range cell averaging CFAR. (After Gregers-Hansen: [12].) 
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 meff = (m + k)/(l + k), where k = 0.09 for an envelope detector or 0.65 for a 

log detector. 

 When using greatest-of selection: 

 k = 0.37 for square-law detector, 0.5 for envelope detector, or 1.26 for log 

detector. 

 For CFAR using hard limiting, add 1 dB limiting loss, and set 

 meff = (Bw/Bn)  1 for a Dicke-fix receiver, or 

 meff = B  1 for dispersive or pulse-compression CFAR. 

An approximation for the curve of Figure 10.11 is 
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10.2.5.3 Integrator Weighting Loss Lv 

The ideal video integrator process applies weights to each of the n pulses that 

match the envelope of the two-way antenna gain of a scanning radar. This is the 

process used in Chapter 5 to calculate beamshape loss Lp0 = 1.33 = 1.24 dB. Blake 

[13, 14] obtained a loss Lp = 1.6 dB by assuming an integrator with uniform 

weight over an optimum fraction of the half-power beamwidth, which added 0.27 
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Figure 10.11  Universal curve for CFAR loss in single-hit detection, for steady or Rayleigh target. 

(After Gregers-Hansen: [12].) 
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dB of integrator weighting loss to the inherent beamshape loss. For other 

weighting functions (e.g., the exponential or double-exponential analyzed by 

Trunk [15, 16]), the loss Lv varies from 0.14 to 0.34 dB.  

Uniform weights are optimum for pulses received during the fixed beam 

dwell of an electronically scanned radar. 

10.2.5.4 Collapsing Loss Lc 

Collapsing loss is defined [17] as 

The increase in required input signal-to-noise ratio to maintain a given probability of detec-
tion when resolution cells or samples containing only noise are integrated along with those 

containing signals and noise. Note: This type of loss occurs, for example, when radar returns 

containing range, azimuth and elevation information are constrained to a two-dimensional 
display. 

The 2-D display collapses the information obtained from three dimensions. 

The collapsing ratio  is defined as 

 
m n

n


   (10.32) 

where n is the number of samples containing signal and noise and m is the number 

containing noise alone. The collapsing loss, when using a square-law detector,
1
 is 

calculated as in increase in integration loss Li, given by 
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when the false-alarm probability Pfa is held constant. In other cases, when the res-

olution cell is broadened by the collapsing process (e.g., excessive width of a 

range gate used for integration or broadening of the pulse from insufficient band-

width or display resolution), the false-alarm time may be held constant by allow-

ing an increased false-alarm probability Pfa and reducing the loss from (10.33) 

by the ratio of D(n) for Pfa to D(n) for Pfa: 
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1  Trunk [18] has shown that the collapsing loss in greater when a linear envelope detector is used. 
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10.2.5.5 MTI Losses Lmti 

Three MTI losses are recognized: 

 Noise correlation loss Lmti(a). Use of MTI does not change the average S/N of 

targets that are broadly distributed in velocity, but nevertheless introduces a 

requirement for greater signal input that increases the detectability factor Dx. 

Passage of noise through an x-pulse MTI canceler introduces partial correla-

tion over x successive outputs [19]. This reduces from n to an the number of 

independent noise samples available for integration in subsequent processing, 

where 

 

2 3                for 2

18 35 1 2     for 3

20 47 0.43 for 4

a x

x

x

 

  

  

 (10.35) 

The corresponding loss is the ratio of detectability factor for integration of an 

pulses to that for n pulses: 
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 An MTI system in which the signals are downconverted to baseband for pro-

cessing is best implemented with two parallel cancelers for the in-phase (I-

channel) and quadrature (Q-channel) components. If the quadrature canceler 

channel is not included, there is a further reduction factor of two in the num-

ber of independent noise samples integrated: 
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 When batch processing is used, with an x-pulse canceler operating on n/x 

batches at different PRFs, the number of outputs available for integration be-

comes n/x, giving 
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D n x
L

D n
  (10.38) 

Batch processing is not normally used with the I-channel canceler only, but a 

further reduction from n/x to n/2x effective samples would apply in this case. 
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 Blind-phase loss Lmti(b). Use of only the in-phase bipolar video leads to rejec-

tion of the quadrature components of both noise and signal. The effect on in-

tegration is given by (10.37), but there is also an increase in target fluctuation 

loss. The Rayleigh target, having a chi-square distribution with 2K = 2 de-

grees of freedom, is converted to a Gaussian target (K = 1). The fluctuation 

loss is not significantly increased if the target changes phase sufficiently to 

appear at full amplitude in the I channel output at some time during to. How-

ever, in a batch-processed system where there is only one output sample, the 

fluctuation loss (in decibels) for a target with 2Kne degrees of freedom is 

doubled: 
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 Velocity response loss Lmti(c). The S/N ratio remains the same in passage 

through the canceler system, when averaged over all target velocities, but in-

dividual targets lying near the response null may be canceled or significantly 

suppressed by the MTI. This is a statistical loss, calculated as shown in Sec-

tion 10.2.5. The resulting loss is shown in Figure 10.12 as a function of detec-

tion probability, and is defined as the increase in input signal required to 

maintain the detection probability. Because of the high value of this loss at 

high Pd, PRF stagger or diversity is almost always used.  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
2

0

2

4

6

8

10

12

14

16

18

20

Detection probability

V
e

lo
c
it
y

re
s
p

o
n

s
e

lo
s
s

(d
B

)

.

Single canceler

Dual canceler

Staggered PRI

 

Figure 10.12  MTI velocity response loss versus detection probability for Case 1 targets (solid lines), 

and steady target (dashed lines). From [1]. 
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10.2.5.6 Pulsed Doppler Losses 

Several losses appearing in pulsed Doppler processors are discussed below. 

 Doppler filter matching loss Lmf. This is the loss relative to a filter matched to 

the envelope of the input pulse train received during the coherent integration 

time tf. It depends on the weighting applied during tf to obtain the desired fil-

ter sidelobes. The filter performance for a given sidelobe level can be found 

using the curves of Figure 10.7, replacing the pulsewidth factor with a filter 

bandwidth factor, and calculating the loss from the plotted values of efficien-

cy as 
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f

L 


 (10.40) 

 Range gate matching loss Lm. When a range gate of width g is used at the in-

put to the Doppler filters, the combined response of this gate and the preced-

ing IF filter should match the transmitted pulse. If a wideband IF is used with 

a rectangular gate, the range gate loss is 
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 (10.41) 

If a short sampling strobe is used in place of the range gate, Lm is determined 

by the preceding IF filter, as with other types of radar. 

 Velocity response loss Lvr for pulsed Doppler. Section 9.6.4 discussed the 

fraction of target velocities within the blind speed of the waveform in which 

the response of a Doppler filter bank falls below 6 dB relative to response 

within the passband. In low- and medium-PRF radar, where target velocities 

may exceed the blind speed, PRF diversity is used to fill these regions of in-

adequate response, in order to preserve detection performance on targets that 

are aliased to within v/2 of the mean clutter velocity. In general, two or 

three PRFs are needed to fill all such regions out to the maximum target ve-

locity. Detection performance is reduced at velocities where response is inad-

equate at one or more frequencies. The input signal energy ratio must be in-

creased sufficiently to obtain the desired average Pd for targets distributed 

over the specified velocity region, and that increase is the velocity response 

loss. There is no general formula that expresses the velocity response loss, 

but the eclipsing-loss curves of Figure 10.4 also represent velocity response 
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loss as a function of detection probability if duty cycle Du is replaced by the 

fraction of velocities having filter response less than 6 dB. 

 Transient gating loss. When the coherent processing interval tf includes nf fill 

pulses to establish steady-state clutter inputs on clutter beyond the unambigu-

ous range, the processor must gate out those pulses to remove the initial tran-

sient before passing inputs to the Doppler filter. The transient gating loss re-

flects the resulting loss of input energy relative to nc pulses transmitted during 

the CPI: 

 1
f

tg

c

n
L

n
   (10.42) 

10.2.5.7 Straddling Losses 

Whether electronic processing is carried out in analog or digital form, the four-

dimensional radar space is sampled at discrete points rather than continuously. 

Unless these points are spaced within a fraction of the resolution cell, the SNR on 

targets that are displaced from the nearest sample point will be reduced at the pro-

cessor output.  

 Range straddling loss Ler. Range gates or strobes are usually spaced by ap-

proximately , but a signal having a peak that arrives other than at the strobe 

or the center of the gate is passed with reduced amplitude. The amount of 

straddling loss depends on the pulse shape and gate duration as well as on the 

spacing. For rectangular pulses passed through a rectangular IF filter, the loss 

is shown in Figure 10.13 as a function of the spacing of a narrow strobe.  
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Figure 10.13  Range straddling loss versus sample spacing for rectangular pulse passed through a 

rectangular filter with B = 1.5. From [1]. 
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 Filter straddling loss Lef. Signals may also be centered at frequencies between 

the Doppler filters, introducing a filter straddling loss. When heavily 

weighted filters are used, they overlap within the 3-dB points, making this 

loss insignificant, as shown in Figure 10.14. 

 Angle Straddling Loss Lea. The beamshape loss accounts for the sampling in 

angle space by the scanning antenna beam. However, if the antenna scans 

continuously and integration or coherent processing is carried out in a single 

batch rather than continuously, the center of the batch may not coincide with 

the angle of the target. As a result, the peak of the echo envelope may strad-

dle two processing intervals, introducing an angle straddling loss. This loss is 

absent if, for example, a moving-window integrator is used rather than a 

batch process or pulsed Doppler coherent process. Division of the observation 

time into two or more batch processing intervals reduces straddling loss to a 

negligible level, but reduces the integration gain unless the batch outputs are 

subsequently integrated in a moving-window process. Overlapping pro-

cessing batches may also be used, but if the processing is coherent this pre-

cludes burst-to-burst PRF or RF agility. 

10.2.6 Losses in Clutter Detectability Factor 

In Chapter 3 it was shown that the interference spectral density C0 contributed by 

clutter required adjustment before adding it to the density N0 of white Gaussian 

noise to form the total interference density. The two factors discussed here are 

applied to calculate the clutter detectability factor Dxc used in that adjustment. 
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Figure 10.14  Filter straddling loss versus detection probability for bursts weighted to achieve sidelobe 

level Gs. From [1]. 
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10.2.6.1 Clutter Correlation Loss Lcc 

The input clutter is characterized by its correlation time tc, given by (3.6), from 

which the number nc of independent clutter samples available for integration can 

be calculated. The clutter correlation loss is then given by 
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D n
L

D n
  (10.43) 

For example, if clutter remains correlated over the entire integration time, the up-

ward adjustment in effective clutter spectral density is equal to the integration gain 

available on thermal noise. 

10.2.6.2 Clutter Distribution Loss Lcd 

Land clutter observed beyond the near region (see Figure 9.1) develops an ampli-

tude distribution broader than the Rayleigh distribution, usually described by 

Weibull or lognormal models. The result is either an increase in false-alarm prob-

ability as the clutter peaks pass a threshold set for Rayleigh clutter with the same 

average value, or an increase in threshold that reduces detection probability on 

targets. Sea clutter also tends toward a Weibull or other spread distribution at low 

grazing angles in high-resolution radar. 

A range-cell-averaging CFAR detector (Figure 10.9) is often used, based on 

the assumption of Rayleigh-distributed interference. With a large enough number 

of reference cells, it sets the threshold power, normalized to unity noise power, at 

a level given by (4.15): 
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where y = log(1/Pfa).  

The Weibull probability density function (9.23), normalized for a scale power 

 = 1, becomes 
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where x is power and aw is the Weibull spread parameter, varying over 1  aw  5. 

The exponential power distribution (Rayleigh voltage) corresponds  to aw = 1. For 
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Weibull clutter with aw > 1 the threshold rises relative to pth given in (10.44) by 

the factor (1 + aw) = aw! that represents the ratio of average clutter power to the 

scale parameter  that was assumed unity in (10.45). However, when aw > 1, the 

increase in pth is insufficient to maintain the intended false-alarm probability Pfaw, 

which becomes 

  1 ,
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faw w w
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P P a x a dx
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      (10.46) 

The increase in false-alarm probability when the detection threshold is adjusted 

for a Rayleigh distribution (aw = 1) based on the average clutter power measured 

in a cell-averaging CFAR detector is shown in Figure 10.15.  

For example, if the intended Pfa = 10
-4

, the achieved Pfaw increases to 0.013 

for clutter with aw = 1.5, and to 0.05 for aw = 2. In an overland search area con-

taining 10
5
 resolution cells, there would be 5,000 false alarms from land clutter in 

the latter case. While a human observer might be able to ignore these and detect 

targets in relatively clear regions of the display, effective measures to control false 

alarms are essential in any system using electronic detection. 

An approach used with MTI in many radars is to precede the canceler with a 

limiter that is adjusted to restrict the input to a level above noise equal to the MTI 

improvement factor. The large peaks of Weibull or lognormal clutter are then 
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Figure 10.15  False-alarm probability achieved as a function of that intended, for different Weibull 
clutter spread parameters. 
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suppressed by the MTI, but at the expense of spectral spreading that significantly 

reduces the available improvement factor, typically to near 20 dB [20]. In addi-

tion, signals that overlap these peaks are suppressed by the limiting action. The 

false-alarm probability is controlled, but at the expense of reduced detection prob-

ability in regions of heavy clutter. The performance is acceptable in most cases, 

because targets moving between the clutter peaks become visible even with the 

reduced improvement factor, providing interclutter visibility [21]. 

A two-parameter CFAR has been proposed as another possible measure [22]. 

In this system, samples in reference cells are used to estimate both the mean and 

variance of the clutter, and the mean is multiplied by a constant times the variance 

to establish the threshold When a two-parameter CFAR detector is used to adjust 

the threshold for non-Rayleigh clutter, the clutter distribution loss given by (3.8) 

for Weibull-distributed clutter is as shown in Figure 10.16. 

For a lognormal clutter model, the loss can be approximated by using in 

(10.46) or Figure 10.16 an equivalent Weibull spread given by 
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where y is the standard deviation in dB of the lognormal distribution. Both aw 

and y are modeled in Figure 9.4 as functions of the clutter propagation factor Fc. 
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Figure 10.16  Clutter distribution loss Lcd for two-parameter CFAR as a function of false-alarm proba-

bility, for different Weibull clutter spread parameters. 
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Figure 10.16 shows the clutter distribution loss of the two-parameter CFAR detec-

tor. It is clear that use of this approach will introduce a large loss in regions where 

aw > 1. 

10.2.6.3 Clutter Map Loss Lmap 

The clutter map is an alternative to limiting or two-parameter CFAR to reduce 

false alarms from the clutter peaks discussed in Section 9.6.5. The clutter map sets 

a threshold based on a long-term average for each map resolution cell taken over 

several successive search scans. It is effective against discrete clutter sources to 

which the range-cell-averaging CFAR detector would be relatively insensitive. 

The clutter map is characterized not by the loss in output SNR, such as im-

posed by a two-parameter CFAR detector over all resolution cells, but rather by a 

reduction in detection probability in those map cells containing significant clutter. 

Applying (3.2) and (3.10), the clutter improvement factor Im provided by MTI or 

other Doppler processing reduces the average interference-to-noise ratio to 
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where the approximation assumes that the output residue of the Doppler processor 

is uncorrelated (Lcd 1).  

The performance of an idealized clutter map, in which each map cell corre-

sponds to a radar resolution cell, can be modeled by assuming that the gain ap-

plied to signals within a map cell varies inversely with I0/N0: 
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 (10.49) 

where c is the output clutter-to-noise ratio. Only the map cells with input clutter 

energy ratio C0/N0 approaching or exceeding Im suffer reduction in detection per-

formance, while other map cells preserve the detection performance achieved 

against thermal noise.  

The average probability of detection over the map is then found, for the Case 

1 target, as 
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where s is the signal-to-noise ratio and P(x) is the probability density of the 

Weibull-distributed clutter power given by (9.23). A root-finding procedure iden-

tifies the value of s required to obtain the required Pdav, and the clutter map loss 

Lmap is the ratio of that value to D1 required for that Pd in the absence of the varia-

ble gain G: 
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Figure 10.17 shows the clutter map loss as a function of required detection proba-

bility for a Case 1 target in several clutter environments. For example, assume that 

Im = 40 dB, and that the average input clutter-to-noise energy ratio is C0/N0 = +30 

dB, giving c 10 dB = 0.1. The dashed curves in Figure 10.17 show that Pdav = 

80% can be achieved with a map loss of only 0.41 dB for Rayleigh  clutter (aw = 

1), with the loss rising to 1.6 dB for aw = 3 and to 3.8 dB for aw = 5. A detection 

probability of 90% incurs only 0.42 dB of map loss for Rayleigh clutter, but 1.9 

db for aw = 3 and  7 dB for aw = 5. These losses are much smaller than for other 
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Figure 10.17  Clutter map loss as a function of average output clutter-to-noise ratio z for different 
Weibull clutter spread parameters and average output clutter-to-noise ratios of 1.0 (solid curves), 

0.1 (dashed curves) and 0.01 (light solid curves). 
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methods of false-alarm control. The map also has two other advantages: it sup-

ports linear operation of all circuits preceding the MTI or Doppler filter, permit-

ting those circuits to achieve their theoretical improvement factors (see Section 

9.6, and when used to select MTI or normal video processing it permits detection 

of targets with zero radial velocity in cells without clutter, since it can select the 

processing path in response to the actual levels of clutter in each cell. 

10.3 LOSSES IN VISUAL DETECTION 

Operator detection based on a display is a purely analog process, although the 

information presented may be reconstituted digitally and passed at a high refresh 

rate to the display rather than relying on persistence of the phosphor to retain the 

displayed image. However the display is refreshed, the factors below apply when 

the detection threshold is human rather than electronic. 

10.3.1 Losses in the Visibility Factor 

The visibility factor V0(50) for a PPI display was discussed in Section 4.6 and plot-

ted in Figure 4.13 for Pd = 50%, as a function of the number of pulses n exchanged 

with the target per beamwidth, under “optimum viewing conditions.” The test 

signal used in developing V0 was of constant amplitude. 

If A comparison of V0(50) with the values of D0(50) for electronic detection, for 

n = 1 and n = 10 is shown in Table 10.5, with values for false-alarm probabilities 

of 10
4

 and 10
6

, since the visual detection process might have provided perfor-

mance within that range. 

Table 10.5  Comparison of Visual and Electronic Detection for Pd= 0.5 

n Pfa D0 (dB) V0 (dB) Visual Loss (dB) 

1 104 +9.4 
+13.2 

3.8 

 106 +11.2 2.0 

10 104 +2.2 
+4.2 

2.0 

 106 +3.7 0.5 

Note:  The false-alarm probability for visual detection was not measured. 

The average visual detection loss is 2.1 dB over the four listed cases. It would be 

2.9 dB if Pfa were 10
4

 for the visual process, or 1.3 dB if Pfa were 10
6

. There 

appear to be no data to determine which estimate is more nearly correct. 
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10.3.2 Collapsing Loss on the Display 

The typical PPI display for visual detection in a medium-range surveillance radar 

presents pulses of  3 s width out to a range of 300 km, corresponding to 2,000 

s of delay. The radius of the display corresponds to 670 range cells. The PPI dis-

plays used in World War II had approximately 200 resolvable spots in the radius 

of the PPI, resulting in a collapsing ratio   3. While the beamwidth is normally 

wider than the angular resolution on the PPI at full range, there is also collapsing 

in angle for mid- and short-range targets. The collapsing ratio increases for shorter 

pulses, and the limited resolution of the human eye can add further collapsing. 

These losses explain at least part of the excess loss in the visibility factor. 

10.3.3 Bandwidth Correction Factor Cb 

The bandwidth correction factor, expressed by (1.17), adjusts for the loss in target 

visibility resulting from departure from the optimum IF bandwidth Bn = 1.2/. The 

visibility factor, over a broad region near that value, remains close to the value for 

the optimum bandwidth, where it is  1.3–2.9 dB higher than the value for elec-

tronic threshold detection. 

10.3.4 Operator Loss Lo 

Discrepancies between expected and achieved detection ranges in operational sys-

tems have often been attributed to the ill-defined operator loss. Blake [9, p. 370] 

states that 

The operator loss tends in practice to become an arbitrary factor to account for observed dis-
crepancies between computer and observed radar performance; and while in some cases it 

may be a valid explanation, in others it may be misused to conceal ignorance to why a radar’s 

actual performance is less than that predicted by calculations. In any case it is too vague a 
concept to employ in a range calculation aimed at evaluating the merit of a particular radar 

design or for other engineering purposes. 

The large number of losses listed in this chapter, many of which are uncertain 

even when the attempt is made to produce a complete loss budget, are a more like-

ly explanation of the reduced performance actually observed in tests. 

There are certainly physical and psychological problems that can reduce op-

erator performance relative to the V0 curves used to characterize what is expected 

under optimum conditions. Distractions from the observing task or absence of the 

operator from the display position reduce detection probability to zero over some 

periods. However, other than the few decibels excess in V0 as compared to D0, the 

use of an operator loss should be avoided in radar performance analysis. 
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10.4 SUMMARY OF LOSS FACTORS 

This chapter has presented an inventory of the losses that must be included in 

some form in the radar equation to provide accurate performance predictions. 

Some of these are specifically called out in the equation, while others are embed-

ded in other terms. Some are constant regardless of operating conditions and de-

sired performance, while others depend on the environment and the target location 

in range and angles relative to the radar (and to the orientation of the face of an 

electronically scanned array). Still others are function of the detection probability 

desired, increasing steeply as Pd  1. 

Procedures for calculation of most of these losses have been offered and 

curves provided showing typical values. In other cases, analysis of the specific 

design details of the radar and its signal processor, lying beyond the scope of this 

general discussion, are necessary. While the number of factors to be considered in 

loss assessment is large, it is hoped that the material presented will be useful in 

improving the accuracy and consistency of radar range performance analysis. 

It is important in analysis, design, and operation of modern, software-

controlled radar systems to account accurately for the variation of system loss 

with search and target acquisition strategy. For example, beamshape loss is re-

duced by close spacing of beam positions, at the expense of allocating more 

transmitter energy and radar time to search of a given sector. Scanning the volume 

repeatedly, with lower Pd per scan and increased beam spacing, may require less 

total energy and time than performing a single scan with high Pd, especially for 

fluctuating targets. The optimum strategy requires careful balance between the 

beamshape losses discussed in Chapter 5 and statistical losses discussed in this 

chapter. Signal processing losses can be reduced by more dense sampling of 

range-Doppler space to avoid straddling loss. Unlike beamshape loss from sam-

pling in the two angle coordinates, this does not involve increasing transmitted 

energy or search time, requiring only greater processing throughput and memory. 

The cost (in hardware acquisition, size, weight, and power drain) of such over-

sampling decreases as Moore’s law reduces the required digital hardware. 

An area that has not been explored is the potential to oversample in angle 

space, without increasing energy and dwell time, by using multiple offset receiv-

ing beams surrounding the transmitting beam. In modern array radars this is pos-

sible with minimal added hardware by combining the monopulse sum and differ-

ence receiver outputs to form the offset beams. Parallel processors for the multiple 

beams are required for this mode of operation, but as the cost of the array and 

transmitter increase relative to receivers and processing, this may prove a more 

economical solution than scheduling closely spaced transmitting beams.  

A careful study of losses is essential if the radar design is to permit efficient 

use of the increasingly expensive energy and time of these modern systems. If the 
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detailed loss analysis of this chapter provides the basis for such studies, one objec-

tive of this book will have been achieved. 
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List of Symbols 

The following symbols are used in equations and text. The section numbers listed 

are the locations of their first use.  

Symbol Meaning Defined 

A Physical aperture area 2.1 

A( f ) Signal spectrum 7.5.5 

Ar( f ) Received signal spectrum 7.5.5 

Ab Beam-axis azimuth 9.5.3 

Ac Area of surface clutter cell 3.3.1 

Acs Area of surface in sidelobes 3.6.1 

Am Azimuth search sector 2.1 

Ar Effective receiving aperture area 1.1.1 

a Factor in rain attenuation 7.3.1 

ae Earth’s radius 2.2.1 

as Fraction of antenna power radiated  to surface 6.3.1 

aw Spread parameter of Weibull distribution 3.2.3 

Bn Receiver noise bandwidth 1.3.1 

b Exponent of rainfall rate in attenuation equation 7.3.1 

 Coefficient for vegetation factor 8.3.3 

 Scale parameter of K-distribution 9.1.4 

CA Clutter attenuation 9.6.4 

C(v) Fresnel cosine integral 8.4.2 

C0 Clutter spectral density 3.1 

C0e Effective clutter spectral density 3.1 

Ci Clutter energy in ambiguity i 3.2.1 

 Input clutter energy 9.6 

Cb Bandwidth correction factor 1.3 

Co Output clutter energy 9.6 

Cx Detector loss 4.4.2 
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CTs Temperature correction factor for snow attenuation 7.3.4 

c Velocity of light 3.1 

D Detectability factor 1.1.2 

 Divergence factor  8.3.4 

 Diameter of water droplet  9.5.5 

D0 Steady-target detectability factor 1.3.2 

D01 Basic single-pulse detectability factor for steady target 2.1 

D1,2,3,4 Basic detectability factor for Case 1,2,3,4 targets 1.5.5 

Dc Detectability factor for coherent detector 4.4.1 

Dc1 Detectability factor for coherent detector on single pulse 4.4.1 

De Detectability factor for general target 1.5.5 

Dt, Dr Directivity of transmitting, receiving antenna 2.6.1 

Dx Effective detectability factor 1.4.1 

d Diameter of rainstorm 7.3.3 

dPv Probability increment of signal-plus-noise voltage 4.3.3 

dPp Probability increment of signal-plus-noise power 4.3.3 

d1, d2 Path segments to knife edge 8.4.2 

E Signal energy 1.1.1 

 On-axis field strength 8.1.1 

Ea Energy density at receiving antenna 1.1.1 

Ed Direct field strength 8.1.1 

En Instantaneous noise voltage 4.2.4 

Ep Energy density 1.1.1 

Eq Quantizing noise voltage 6.5.3 

Er Reflected field strength 8.1.1 

Es Peak signal voltage 4.2.4 

Et Energy of transmitted pulse 1.1.1 

 Threshold voltage 4.2.4 

e Partial pressure of water vapor 7.1.1 

 Electron charge 7.4.4 

F Pattern-propagation factor 1.4.1 

F(h) Factor in equation for total electron count 7.5.3 

Fa Fraction of velocities with acceptable response 9.6.4 

Fc Clutter pattern-propagation factor 3.3.3 

Fc Clutter propagation factor 9.1.2 

Fd0 First mode of smooth-sphere diffraction equation 8.4.1 
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Fd0 Adjusted first mode of smooth-sphere diffraction equation 8.4.1 

Fdk Knife-edge diffraction factor 8.4.2 

Fi Pattern-propagation factor in interference region 8.1.1 

Fn Receiver noise figure 1.2 

Fp Polarization factor 1.4.4 

Ft,Fr Transmitting, receiving pattern-propagation factors 1.3 

f Frequency offset from carrier 7.5.5 

f () Antenna voltage pattern 3.3.4 

f 0  Carrier frequency 1.6.3 

f c  Voltage pattern of antenna at clutter elevation 3.3.4 

 Correlation frequency of target 4.5.2 

fcir() Voltage pattern of circular aperture 5.2.2 

fcos() Voltage pattern of cosine-illuminated rectangular aperture 5.2.2 

fg() Gaussian voltage pattern 5.2.2 

fMc Radar frequency in megahertz 1.3.2 

fN Oxygen resonance for rotational quantum number N 7.2.1 

fr Pulse repetition frequency 1.1.2 

ft, fr Pattern component of pattern-propagation factor 5. 

ftsf, frsf Voltage gains of far transmitting and receiving sidelobes 9.1.2 

fu() Voltage pattern of uniformly illuminated aperture 5.2.2 

G Power gain 1.1.1 

 Ground range 8.2.2 

Ge Electronic gain of repeater jammer 3.8.1 

Ge() Element gain 6.3.5 

Gi Integration gain 4.4.4 

Gt, Gr Transmitting and receiving antenna gains 1.1.1 

Gtsf,, Grsf Transmitting and receiving antenna far sidelobe gains 9.1.2 

G1 Gain of first receiver stage 6.5.1 

 Ground range from radar to reflection point 8.2.4 

G2 Ground range from target to reflection point 8.2.5 

H Earth’s magnetic field 7.5.1 

 Natural unit of height 8.4.1 

H( · )  Filter response 6.1.1 

H( · )  Normalized filter response 6.1.1 

Hm( · )  Normalized filter response of m-delay canceler 9.6.1 

Hm Maximum target altitude 2.2.1 
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h Aperture height (vertical dimension) 2.2.2 

 Planck’s constant 6.1.1 

 Altitude  6.3.2 

 Clearance from knife edge 8.4.2 

h0 Atmospheric scale height 7.1.4 

hc Height of significant clutter above surface 9.1.2 

hm Height at end of path 7.2.3 

 Altitude of maximum electron density 7.5.1 

hmin Minimum obstacle height for knife-edge diffraction 8.4.2 

hr Antenna altitude above surface 3.1.1 

hr Antenna altitude above average surface 9.1.2 

hs Surface altitude above sea level 7.1.4 

ht1 Target altitude above flat Earth 8.2.1 

I(x,n) Pearson’s incomplete gamma function 4.2.2 

I0 Interference spectral density 3.1 

I0e Effective interference energy 3.1 

Im Clutter improvement factor 3.2.4 

Im1, 2, 3 MTI improvement factors of 1- 2- and 3-pulse cancelers 9.6.1 

Imn1, 2, 3 
Noncoherent MTI improvement factors of 1- 2- and 3-

pulse cancelers 
9.6.2 

In(x) Modified Bessel function of first kind of order n 4.2.1 

J0 Jamming spectral density 3.1 

J0e Effective jamming spectral density 3.1 

K Parameter in cloud attenuation (c  1)/(c + 2) 7.3.5 

KB Beaufort wind scale number 9.2.1 

k Boltzmann’s constant 1.1.1 

ke Effective Earth’s radius factor 2.2.1 

ksh Wind-shear constant 9.5.3 

kt Threshold constant 4.2.2 

ktn Threshold constant for n pulses 4.2.2 

k Atmospheric attenuation coefficient 6.3.2 

k1 One-way atmospheric attenuation coefficient 6.3.2 

kc Cloud attenuation coefficient 7.3.5 

kO Oxygen attenuation coefficient 7.2.1 

kr Rain attenuation coefficient 7.3.1 

ks Snow attenuation coefficient 7.3.4 
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kW Water-vapor attenuation coefficient 6.2.1 

L System loss factor 1.3 

 Natural unit of range 8.4.1 

L1 RF loss 1.1.1 

La Antenna loss 2.6.1 

Las Antenna surface tolerance loss 10.1.5 

Lc Collapsing loss factor 1.4.1 

Lcsc Cosecant factor loss  2.2.3 

Ld Scan distribution loss 2.6.2 

Lecl Eclipsing loss = 1/F
2
ecl 10.1.4 

LFar Faraday rotation loss 7.5.4 

Lf Fluctuation loss 2.6.2 

Lfd Frequency-diversity loss = 1/F
2
fd 2.6.3 

Li Integration loss 2.6.2 

Llens Atmospheric lens loss = 1/F
2
lens 1.6.2 

Lm Matching loss factor 1.4.1 

Ln Pattern constant 2.1 

Lo Operator loss 1.4.1 

Lp Beamshape loss 1.3.1 

Lpe Elevation beamshape loss 2.2.2 

Lpn Net beamshape loss for search radar equation 2.3.2 

LpT2 Beamshape loss for 2-coordinate scan with triangular grid 5.5.1 

Lp0 Beamshape loss in one coordinate with dense sampling 5.2.3 

Lp1, Lp2 One-, two-coordinate beamshape loss 5.2.3 

Lr Receiving line loss 1.1.2 

 Radial span of target 4.5.2 

Lrec Receiving noise loss 2.6.1 

Ls Search loss factor 2.1 

Lsc Scanning loss 10.2.1 

Lsector Scan sector loss 2.6.2 

Lstc Sensitivity time control loss = 1/F
2
ftc 1.6.2 

Lt Transmitting line loss 1.2 

Lrdr Loss factor varying in range = 1/F
2
rdr 2.6.1 

Lx Miscellaneous loss 1.3.1 

 Target cross-range span 4.5.2 

L Atmospheric absorption loss 1.3.1 
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L1 One-way atmospheric attenuation 6.3.1 

Lr, Lt Transmitting and receiving atmospheric attenuation 1.4.1 

Lt Atmospheric attenuation through entire troposphere 7.2.3 

L Aperture efficiency loss = 1/a 2.1 

M Matching factor 1.4.2 

 Water density of cloud 7.3.5 

m Number of MFAR search sectors 2.4 

 Electron mass 7.5.4 

mx mean of integrated detector output 4.2.2 

m1 mean of single-pulse detector output 4.2.2 

N Noise power 1.1.1 

 Refractivity of troposphere 7.1.1 

N0 Noise spectral density 1.1.1 

 Refractivity of troposphere at sea level 7.1.3 

Nd0 Refractivity of dry air at sea level 7.1.3 

Ne Electron density in ionosphere 7.5.2 

Ni Refractivity of ionosphere 7.5.5 

Nm Maximum electron density in ionosphere 7.5.2 

Nt Total electron count through ionosphere 7.5.3 

Nw0 Refractivity of water vapor at sea level 7.1.3 

n Number of pulses integrated 1.1.2 

n(D) Distribution of droplets with diameter 9.5.5 

n Number of samples noncoherently integration 1.4.2 

nbt Number of transmitting beams in search sector 2.1 

nc Number of independent clutter samples 3.2.3 

 Number of pulses in CPI 9.6.4 

ne Number of independent target samples 1.5.5 

nef Number of independent target samples in frequency 4.5.2 

nep Number of independent target samples in polarization 4.5.2 

nes Number of independent target samples from spatial  

diversity 

4.5.2 

net Number of independent target samples in time 4.5.2 

nf Number of fill pulses in CPI 9.6.4 

np Number of pulses in Doppler processor 9.6.4 

nsc Number of scans 2.5.1 
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P Air pressure 6.3.2 

 Total power 6.3.3 

P(x) Probability density function of clutter 9.1.4 

Pa1, …4 Power components in noise temperature model 6.3.1 

Pav Average transmitter power 1.3.4 

Pd Probability of detection 1.3.2 

Pd0,1,2,3,4 Probability of detection for steady target, Case 1,2,3,4 4.2.1 

Pda Partial pressure of dry air 7.1.1 

Pda0 Partial pressure of dry air at sea level 7.1.3 

Pfaf False-alarm probability 1.6.3 

Pt Transmitter peak power 1.1.1 

Pw
1

(p,aw) Inverse integral of the Weibull distribution 3.2.3 

P(
2
,m) Integral of the chi-square distribution 4.3.2 

P
1

 (p,m) Inverse of integral of the chi-square distribution 3.2.3 

P
 Incomplete gamma function 4.2.2 

P
1

 Inverse of incomplete gamma function 4.2.2 

p Probability 3.2.3 

 Instantaneous signal power 4.3.3 

 Parameter in solution of cubic equation 8.2.5 

R Target range 1.1.1 

 Circuit resistance 6.1.1 

R Range with pattern-propagation factor 1.3.2 

R0 Free-space range 1.3.2 

R1 Range limit of near region for clutter 3.3.1 

R1, R2 Segments of direct and reflected ranges 8.2.2 

R50 Range for 50% detection probability 1.3.2 

Rc Clutter range 3.2.1 

 range for calculation of signal-to-noise ratio 8.6.3 

Rd Range corresponding to time delay td 7.1.5 

Rh Range to horizon 8.4.1 

Rm Maximum detection range 1.1 

Rr Target-to-receiver range 1.3.5 

 Pathlength of reflected ray 8.1.1 

Rt Transmitter-to-target range 1.3.5 

Ru Unambiguous range 1.6.1 

R Range limit of interference region, where  = /6 8.5 
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r Range variable 6.3.2 

 Ratio of DC to AC components of clutter spectrum 9.3.2 

rr Rainfall rate 7.3.1 

rs Snowfall rate in mm/h of water 7.3.4 

S Signal power 1.1.1 

SS Sea-state number 9.2.1 

S(v) Fresnel sine integral 8.4.2 

s Signal-to-noise power ratio at input to envelope detector 4.2.1 

so Output signal-to-noise ratio of detector 4.4.1 

T Temperature 1.2 

T0 Reference temperature = 290K 1.4.1 

T0.1 Galactic temperature at 100 MHz 6.3.2 

Ta Antenna temperature 1.3.2 

Ta Sky noise 6.3.1 

TB Brightness temperature of sun 6.3.2 

Tc Temperature of cosmos 6.3.1 

Te Receiver temperature 1.3.2 

Text External noise temperature at antenna 6.3.5 

TF Search time fraction 2.4.1 

TG Surface temperature 6.3.1 

Tp Physical temperature 6.2 

Tpt Physical temperature of transmitter 6.3.5 

Tq Quantizing noise temperature 6.5.3 

Tr Receiving line loss 1.3.2 

Ts System noise temperature 1.1.1 

T Tropospheric noise temperature 6.3.2 

tc Correlation time 3.2.3 

td Two-way time delay of signal 1.6.1 

tf Coherent processing interval 1.3.4 

to Observation time 1.1.2 

tr Pulse repetition interval 1.3.4 

ts Search frame time 1.6.3 

U Height-gain factor 8.4.1 

V Visibility factor 1.1.2 

V(X) Attenuation (range) factor 8.4.1 

V0(50) Visibility factor for Pd = 50% on steady target 1.1.2 
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Vc Volume of clutter in resolution cell 3.4.1 

v Instantaneous signal-plus-noise voltage 4.3.3 

 Knife-edge diffraction parameter 8.4.2 

 Shape parameter of K-distribution 9.1.4 

v0 Mean wind speed 9.1.3 

v0f Projection of fall rate normal to beam axis 9.5.3 

v0w Projection of mean wind speed on beam axis 9.5.3 

vw Wind speed 3.6.2 

vz Vertical velocity of target 2.5.1 

 Normalized mean clutter velocity  9.6.1 

W Weight of chaff 9.5.6 

W( · ) Power spectral density 9.1.3 

W0 Zero-frequency power spectral density 9.1.3 

W Water-vapor factor for attenuation 7.2.5 

X Range in natural units 8.4.1 

x Coordinate of raster scan 5.4.1 

 Relative magnitude of reflected ray at receiver 8.1.1 

 2f 8.3.1 

 Weight factor in interpolation 8.6.1 

x50 Median value of x 9.1.4 

xav Average value of x 9.1.4 

y Sum of detector output voltages for n pulses 4.2.1 

 Weight factor in interpolation 8.6.1 

yb Threshold normalized to rms noise at detector output 4.2.1 

Z Normalized altitude 7.5.1 

 Terminal height in natural units 8.4.1 

 Precipitation reflectivity factor 9.5.5 

 Phase angle of reflected ray 8.1.1 

 Scale parameter of Weibull distribution 9.1.4 

 Exponent of cosine factor in element gain 6.3.5 

 Slope of surface facet giving specular reflection 9.1.1 

0 2  times rms slope of surface 9.1.1 

(td) Output waveform 7.5.5 

 Reflection coefficient of antenna 6.3.5 

(n) Euler gamma function 4.2.2 

0 Reflection coefficient of antenna at broadside 6.3.5 
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cs, os Reflection coefficients of same- and opposite-sense CP 8.3.1 

h, v Fresnel reflection coefficients for H and V polarizations 8.3.1 

 Surface clutter reflectivity factor 3.3.3 

 Earth-center angle subtended by ground range 8.2.4 

 Angular sampling interval 5.1.2 

f Agile bandwidth 4.5.2 

 Absorption-line broadening factor 7.2.1 

 Term in equation for dielectric constants of water 7.3.5 

 Elevation width of fence 2.5.1 

 Change in target aspect angle 4.5.2 

t Time delay in ionosphere 7.5.5 

 Difference between reflected and direct paths 8.1.1 

1 …6 Approximations of pathlength difference 8.2 

1, 2 Factors in 1
st
 and 2

nd
 estimates of detection range 1.3.2 

h Departure of surface from tangent plane 8.2.3 

t Differential time delay in ionosphere 7.5.5 

 Phase shift from ionospheric dispersion 7.5.5 

 Complex dielectric constant of surface 8.3.1 

0,  Terms in equation for dielectric constants of water 7.3.5 

c Complex dielectric constant of water  7.3.5 

i, r Imaginary an real components of dielectric constant 8.3.1 

s Static dielectric constant of water 8.3.1 

(Pd,Pfa) Shnidman’s parameter for detectability calculation 4.2.6 

a Aperture efficiency 2.1 

i Illumination efficiency of aperture 10.1.5 

v Volume clutter reflectivity 9.5.1 

 Elevation angle 1.6.4 

 Angle coordinate in plane of scan 5.2.1 

 Angle between ray and Earth’s magnetic field 7.5.4 

 Angle in knife-edge geometry 8.4.2 

 Local ray elevation 7.5.4 

0 Lower limit of search elevation  2.1 

 Angle of ray leaving surface 7.1.5 

1 Upper elevation of full-range coverage 2.2.1 

2 Upper elevation of csc
2
 coverage 2.2.1 
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3 Half-power (3 dB) beamwidth 5.2.1 

a Azimuth beamwidth 3.2.1 

at Transmitting azimuth beamwidth 2.1 

b Beam axis angle 3.3.4 

c Lobe width of target reflection pattern 4.5.2 

cmax Maximum elevation of clutter 3.4.1 

cmin Minimum elevation of clutter 3.4.1 

e Elevation beamwidth 1.6.3 

et Transmitting elevation beamwidth 2.1 

m Upper limit of search elevation 2.1 

max Elevation of upper edge of transmitting beam 2.1 

min Elevation of lower edge of transmitting beam 2.1 

r Elevation angle of reflected ray 8.1.1 

rd Elevation angle of diffuse reflection 8.3.2 

t Target elevation angle 1.6.4 

tmax, min Transmitting beam limits 2.1 

t Target elevation angle 5.3.1 

 Radar wavelength 1.1.1 

dB Mean of lognormal distribution 9.1.4 

 Surface reflection coefficient 6.3.1 

0 Fresnel reflection coefficient 6.3.3 

s Specular scattering factor 6.3.3 

v Vegetation factor 6.3.3 

w Density of water vapor 6.3.2 

w0 Water vapor density at sea level 7.1.3 

 Target cross section 1.1.1 

 Rms noise voltage 6.1.2 


0 Surface clutter reflectivity 3.3.3 

1 Standard deviation of single-pulse detector output 4.2.2 

 Radar cross section of single raindrop 9.5.5 

b Bistatic target cross section 1.3.5 

c Radar cross section of clutter  9.1.1 

dB Standard deviation in dB of lognormal clutter 9.1.4 

e Conductivity of surface 8.3.1 
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f
0 Facet clutter reflectivity 9.1.1 

h rms roughness of surface 3.3.3 

h Adjusted rms roughness of surface 8.3.2 

i Ionic conductivity 8.3.1 

v Standard deviation of total clutter velocity spread 9.1.3 

v0 Spread of fixed component of clutter 9.1.3 

va Antenna scan component of clutter velocity spread 9.1.3 

vc Standard deviation of clutter velocity 9.1.3 

vf Standard deviation of fall velocity component 9.5.3 

vs Wind-shear component of clutter velocity spread  9.5.3 

v Beamwidth component of clutter velocity spread 9.1.3 

x Standard deviation of integrated detector output 4.2.2 

z Normalized clutter velocity spread 9.6.1 

 Transmitted pulsewidth 1.1.1 

 Relaxation constant of water 8.3.1 

n Processed pulsewidth 3.3.1 

 Parameter in solution of cubic equation 8.2.5 

(E) Integral of the normal distribution 4.2.2 


1

(P) Inverse of integral of the normal distribution 4.2.2 

 Angle coordinate orthogonal to  5.2.1 

 Faraday rotation angle 7.4.4 

3 Half-power beamwidth in  coordinate 5.2.1 

 Probability in chi-squared distribution 4.3.2 

 Grazing angle 3.3.1 

B Brewster angle 8.3.1 

c Critical grazing angle 9.1.2 

bt Beam sector (solid angle) 2.1 

s Search sector (solid angle) 2.1 

s Solid angle of Sun as viewed from Earth 6.3.2 

a Rate of change of target aspect angle 4.5.2 

e Rate of change of target elevation  2.5.1 

s Antenna scan rate 9.1.3 
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Appendix 

Contents of DVD 

The DVD in the back of this book contains Mathcad


 worksheets that apply the 

equations from the text to problems commonly encountered in using the radar 

equation. Printouts of each worksheet are also included in PDF format to permit 

readers without the Mathcad


 program to review the calculation procedures and 

generate worksheets in the language used by other mathematical programs. 

The worksheets were written in Mathcad 11, and should run also on subse-

quent versions of that program. The filenames are listed here by the chapter to 

which they relate. Methods of calculation and results obtained are summarized. 

Worksheets for Chapter 1 

1-1 Revised Blake Chart.mcd 

The Blake chart provides a convenient method for calculating radar detection 

range and recording the parameters used in the calculation. This worksheet im-

plements Blake’s procedure, as revised and shown in Figure 1.2 of the book. It 

requires separate calculations of the pattern-propagation factor, detectability factor 

and several loss terms that are inserted in the worksheet as user inputs. It includes 

subroutines for calculation of the sky temperature and atmospheric attenuation 

(including lens loss and the effect of any specified rain). The two-step iterative 

procedure for applying these attenuation terms is implemented automatically in 

the worksheet.  

1-2 Range in Thermal Noise.mcd 

This worksheet calculates the maximum detection range of a radar when thermal 

noise is the only source of interference. Propagation conditions may depart the 

simplified assumptions inherent in the Blake chart, and may include attenuation 

from rain. Detection range is calculated for either of two types of target trajectory: 

constant target elevation, or constant target altitude. In addition to the parameters 

entered in the Blake chart, the user enters data for other radar parameters such as 

the elevation beamwidth and local surface conditions, rain rate and extent. Effects 

of clutter are not included (see Worksheet 3-1). 
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1-3 Required Pd.mcd 

This worksheet calculates the probabilities of track initiation and retention for a 

track-while-scan system, as functions of the scan number for different values of 

single-scan Pd. The criterion for track initiation is detection on two out of three 

scans following the initial detection. The criterion for dropping tracks is either two 

or three consecutive missed detections. The worksheet was used to generate Fig-

ures 1.7 and 1.8 of the book. 

Worksheets for Chapter 2 

2-1 Search Equation.mcd 

This worksheet solves the search radar equation for detection range as a function 

of radar and target parameters. Supplementary relationships are given to guide in 

specification of certain radar parameters. 

2-2 Power-Aperture Product.mcd 

This worksheet solves the search radar equation for power-aperture product as a 

function of required detection range and target parameters. Supplementary rela-

tionships are given for derivation of radar parameters. 

2-3 Air Surveillance Coverage.mcd 

This worksheet plots coverage patterns for csc
x
 coverage with x = 1, 1.5, and 2, 

and for coverage matched to a constant-altitude profile. Coverage losses for each 

type of pattern are also calculated, as shown in Figure 2.2 of the book. 

Worksheets for Chapter 3 

3-1 Range in Interference.mcd 

This worksheet calculates the maximum detection range of a radar, starting with 

benign conditions in which the propagation conditions may depart the simplified 

assumptions inherent in the Blake chart. Calculations are extended to environ-

ments with noise jamming and clutter, for which user inputs include propagation, 

clutter, jamming, and radar parameters that determine the effects of interference. 

Options are provided to permit skipping calculations for each jamming and clutter 

source to save computing time. 

3-2 CW and HPRF PD Range.mcd 

This worksheet calculates the clutter input energy and detection range of surface-

based CW and HPRF PD radars, considering surface and volume clutter, as dis-

cussed in Sections 3.3.4 and 3.4.6 of the book. The equations generate Figures 3.3, 

3.4, 3.5, 3.8, and 3.9 of the book. 
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3-3 Jamming.mcd 

This worksheet calculates the effects of noise jamming on radar interference level, 

and the requirements on repeater jammers operating in both mainlobe and 

sidelobe regions. 

Worksheets for Chapter 4 

4-1 Detectability Factor.mcd 

The detectability factor is defined as the input signal-to-noise energy ratio re-

quired to obtain specified probabilities of detection Pd and false alarm Pfa for a 

given number n of pulses integrated on a specified target type. This worksheet 

calculates the basic detectability factor (excluding matching, beamshape, and 

“miscellaneous signal processing losses” that are covered by Worksheet 10-1) as a 

function of Pd, Pfa, n, and target type, for single pulses and for video 

(noncoherent) integration, and the detection probability for specified input snr, Pfa, 

n and target type with and without integration. The target types include steady, 

Swerling Cases 1–4, and a generalized target providing ne independent samples 

during the integration period. Curves of integration and fluctuation loss are also 

generated, as shown in Figures 4.9 and 4.10 of the book. 

Worksheets for Chapter 5 

5-1 Beamshape 1-D.mcd 

This worksheet calculates the beamshape loss for one-dimensional scanning when 

the number of pulses per beamwidth is  1.5. The loss is defined as the increase in 

on-axis SNR required to maintain a given probability of detection. The reference 

for loss is the detectability factor for integration of the signal energy received dur-

ing scan through one beamwidth with the on-axis antenna gain. Results are ob-

tained here for both the case of constant energy per dwell is used (total energy for 

the scan increases as beams are overlapped) and of constant energy per scan, using 

either video integration or cumulative probability over the available samples. Two 

antenna tapers are considered: a Gaussian and a cosine illumination of a rectangu-

lar aperture. Steady and fluctuating targets are considered, and for the latter the 

signal can be correlated (Case 1) or uncorrelated (Case 2) from dwell to dwell. 

5-2 Beamshape 2-D Steady.mcd 

This worksheet calculates the beamshape loss on a steady target for one-

dimensional scanning when the number of pulses per beamwidth is  1.5. The 

reference for loss is the detectability factor that would apply using the on-axis 

antenna gain over the time required to scan one beamwidth. Results are obtained 

for two cases: constant energy per dwell, in which the total energy for the scan 

increases as beams are overlapped, and constant energy per scan, in which the 
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energy per dwell is reduced as beams are overlapped. The beam pattern for cosine 

illumination is used. 

5-3 Beamshape 2-D Case 1.mcd 

This worksheet performs the same calculations as in 5-2 but for the Swerling Case 

1 target. 

5-4 Beamshape 2-D Case 2.mcd 

This worksheet performs the same calculations as in 5-2 but for the Swerling Case 

2 target. 

5-5 Beamshape 2-D Diversity.mcd 

This worksheet performs the same calculations as in 5-2 but for the a target that is 

correlated over each scan line but decorrelated from line to line. 

5-6 Beamshape Triangle Steady.mcd 

This worksheet performs the same calculations as in 5-2 but for the 2-D raster 

scan using a triangular grid of beam positions.  

5-7 Beamshape Triangle Case 1.mcd 

This worksheet performs the same calculations as in 5-3 but for the 2-D raster 

scan using a triangular grid of beam positions.  

5-8 Beamshape Triangle Case 2.mcd 

This worksheet performs the same calculations as in 5-4 but for the 2-D raster 

scan using a triangular grid of beam positions.  

5-9 Beamshape Triangle Diversity.mcd 

This worksheet performs the same calculations as in 5-5 but for the 2-D raster 

scan using a triangular grid of beam positions.  

Worksheets for Chapter 6 

6-1 Noise Temperature.mcd 

This worksheet calculates the system input noise temperature of a radar with a 

narrow beam directed at a specified elevation angle. Effect of rain attenuation on 

sky temperature is not included, but a separate calculation for that is included in 

Worksheet 7-6. 

6-2 Sky Temperature.mcd 

This worksheet calculates the sky noise temperature for a narrow beam directed at 

a specified elevation angle, and plots results as a function of frequency for select-
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ed beam angles, as in Figure 6.6 of the book. Effect of rain attenuation is not in-

cluded. Sky temperature for specific conditions may be found by entering those 

conditions at the end of the worksheet. 

6-3 Cascaded Receiver Stages.mcd 

This worksheet calculates the receiver noise temperature Te for a multistage re-

ceiver, with input parameters and output data as shown in Table 6.2 of the book. 

Worksheets for Chapter 7 

7-1 Standard Atmosphere.mcd 

This worksheet stores the parameters of the 1976 U.S. Standard Atmosphere up to 

30 km altitude for use in radar propagation worksheets. Analytical approximations 

are given for temperature, pressure, water-vapor density, and refractivity as func-

tions of altitude. Parameters of the CRPL exponential reference atmospheres are 

listed, and the effective Earth’s radius constant is derived for each of these mod-

els. 

7-2 Attenuation and Noise.mcd 

This worksheet generates a table of tropospheric attenuation coefficients and cre-

ates continuous functions by interpolation. The atmosphere model from worksheet 

7-1 is used to calculate the refractive index profile for ray-tracing and to scale the 

attenuation coefficients to temperature and density of oxygen and water vapor as a 

function of altitude. These data are used to calculate the tropospheric attenuation 

as a function of range at specified elevation angles and radar frequencies, and to 

generate plots for Chapter 7.  

7-3 Attenuation at Frequency F.mcd 

This worksheet calculates the tropospheric attenuation as a function of range for a 

specified frequency F and beam elevation angle b, using expressions from the 

worksheet 7-2 that are modified to run more rapidly for the specified frequency. 

7-4 Weather Attenuation.mcd 

This worksheet applies expressions for rain attenuation derived by Blake, and 

combines these with a temperature correction factor from referenced sources to 

obtain attenuation coefficients for arbitrary temperature. Attenuation coefficients 

for snow and clouds are also calculated.  

7-5 Lens Factor.mcd 

The lens factor F
2
lens is the reciprocal of the two-way lens loss as defined by Weil, 

who provided plots of lens loss as a function of target range and elevation angle of 

the beam at the radar site. This worksheet calculates the lens loss and reproduces 
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Weil’s plot. The method of solution is to use Blake’s ray-tracing formula to find 

the pathlength of the ray that reaches a target at a given altitude above the Earth’s 

surface. Two root-finding equations are then applied, the first finding the ray an-

gle as a function of the target’s range and true elevation, and second finding the 

true target elevation as a function of its range, as required to produce the plot for 

specific beam elevation angles. The two-way lens loss is given by the square of 

the ratio of a small increment of true target elevation to the corresponding change 

in beam angle at the radar. This ratio represents the spreading of energy in the 

beam as it travels through the refracting atmosphere. The lens factor 20log(Flens) 

in dB is the negative of the lens loss in dB. 

7-6 Total Loss at Frequency F.mcd 

This worksheet calculates, for a specified frequency and elevation angle, the trop-

ospheric absorption, lens loss, and weather attenuation as functions of range. The 

corresponding components of sky noise are also calculated. 

7-7 Ionosphere.mcd 

This worksheet performs calculations on ionospheric effects used in the radar 

equation: Faraday rotation loss and dispersion loss. The electron densities of the 

Chapman layers are modeled as in Figure 7.31 of the book. The total electron den-

sity as a function of a path to a specified altitude at specified elevation angle is 

calculated by integration to generate Figure 7.32. The corresponding Faraday rota-

tion is calculated for f0 = 100 MHz as a function of altitude (Figure 7.33), and for 

paths through the ionosphere as a function of frequency in daytime and nighttime 

at elevation angles of 0 and 90 (Figure 7.34). From these data, the Faraday rota-

tion losses, both as the average over the total rotation angle and as a statistical loss 

in reaching a specified Pd, are found (Figures 7.35 and 10.5). The loss from dis-

persion over the signal spectrum (Figures 7.36–7.39) is also found. 

Worksheets for Chapter 8 

8-1 Propagation Factor.mcd 

This worksheet calculates the propagation factor, including the reflected interfer-

ence and diffraction factors, as a function of target range and height. In order to 

produce smooth plots in a minimum computation time, the range and target height 

are varied in logarithmic steps between specified minimum and maximum values. 

The factor for a specific target location is calculated. 

8-2 Reflection Coefficient 

This worksheet calculates and plots the reflection coefficient as a function of graz-

ing angle, for a specified surface and wavelength, including its three components: 

(1) the Fresnel reflection coefficient for vertical and horizontal polarizations; (2) 
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the specular scattering factor; and (3) the vegetation factor. The Fresnel coeffi-

cient is calculated using the Saxton and Lane expressions for dielectric constant of 

sea water and user inputs for land surfaces. The specular scattering factor is given 

by (8.57) in the book. The vegetation factor is calculated using the empirical mod-

el developed by Barton for use in Modern Radar System Analysis Software, Ver-

sion 3, and given by (8.61) in the book. 

Worksheets for Chapter 9 

9-1 Surface Clutter 

This worksheet calculates the reflectivity, propagation factor, and spectral pa-

rameters of land and sea clutter, as described in Sections 9.1–9.4 of the book. 

Plots of the propagation factor (Figures 9.2 and 9.3 in the book) are generated, as 

well as the empirical relationship of Weibull and lognormal spread parameters to 

propagation factor (Figure 9.4) and the products 
0
Fc

4
 of Figures 9.5 and 9.8. 

9-2 Volume Clutter 

This worksheet calculates the reflectivity, propagation factor, and spectral pa-

rameters of rain and sea clutter, as described in Sections 9.5 of this book. Rain, 

snow, and cloud reflectivities are calculated using data from Battan’s Radar Ob-

servation of the Atmosphere and Sauvageot’s Radar Meteorology.  

9-3 Clutter Improvement Factor 

This worksheet calculates the clutter improvement factors of coherent and 

noncoherent MTI and pulsed Doppler processors. User inputs include the spectral 

parameters of the clutter, the radar waveform, and the parameters of the signal 

processor. 

Worksheet for Chapter 10 

10-1 Loss Factors.mcd 

This worksheet calculates the losses that enter into the radar equation that are not 

specific subjects of other worksheets (e.g., atmospheric attenuation and 

beamshape loss). Losses are considered under five headings: 

1. Those that reduce received signal energy: RF line loss and RF mismatch 

loss, polarization factor, and components of the range-dependent re-

sponse factor (STC factor, beam-dwell factor, eclipsing factor), scan and 

scan-sector losses.  

2. Losses in the search radar equation: elevation beamshape loss, beam-

width factor, aperture efficiency and illumination loss, scan distribution 

loss. 
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3. Losses in antenna gain: dimensional tolerances, phase-shifter quantiza-

tion. feed and module phase and amplitude errors. 

4. Filter matching loss, including receiver and  pulse compression. 

5. Signal processing losses: binary integration loss, CFAR loss, collapsing 

loss, MTI and PD processing losses, straddling losses in all coordinates, 

losses in the clutter detectability factor, and clutter map loss. 

Supplemental Worksheets 

For the convenience of users of Modern Radar System Analysis Software, Version 

3.0, modified worksheets for several segments of that software are provided. The-

se replace the corresponding worksheets that the user has already installed from 

Version 3.0, but the remainder of those worksheets are still required to perform 

the radar system analysis. The modifications include corrections and additions to 

worksheets that generate the radar, environment, and jammer models, and to the 

system analysis and search coverage worksheets. 
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Index 

Absorption, atmospheric, 7−9, 11−12, 24, 52, 
76, 83, 97, 201−206, 225, 232−245, 
313, 337, 359 

of surface reflection, 209−210, 295 
Accuracy of range predictions, 16 
Acquisition by tracker, 28, 186, 378 

probability of, 29 
Active electronic scanning array (AESA), 41, 

53, 211 
Airborne pulsed Doppler radar, 21, 92−93, 

250, 318 
Air traffic control radar, 26, 250 
Ambiguity 

clutter, 57−65, 76, 88, 337, 344 
Doppler radar, 73 
range, 21, 57−61 

Amplitude distribution 
of clutter, 58−60, 311, 321−323, 327, 

332−335, 340−344, 389−394  
of noise, 113, 199 
of signal plus noise, 114, 121 
of target cross-section, 18, 118−120, 135, 

153, 294, 385 
Antenna 

aperture, 33−36, 39−47, 51, 365−366 
effective, 3 
illumination, 368−369 

array 
bandwidth, 369 
design for surveillance, 41−43 
element pattern, 214, 359 
feed systems, 212 
mismatch effect on noise, 212−215, 359 
phase and amplitude error effects, 369 
phase shifter loss, 212, 365 

beam-dwell factor, 22−24, 362 
beam solid angle, 34−36 
beamwidth., 34, 38, 64 

2-D surveillance radar, 37−38 
effective, for unequal transmitting and 

receiving beamwidths, 65 
jammer, 97 

 

 
beamwidth component of clutter velocity 

spread, 320, 338 
beamwidth constant, 42  
beamwidth factor, 51, 366  
beamwidth-limited clutter cell, 65 
blockage, 41, 51, 366, 369 
directivity 209 (see also gain) 
efficiency, 36, 51, 366−369 
gain, 2, 13, 19, 34−40, 51, 367−370 
lens, 51, 211, 366−369 
loss, 201, 211, 367−370 
noise temperature, 201−216 
pattern, 7, 19, 37, 43, 367−370 

loss, 40, 47, 51, 147, 367−370 
scanning, 22, 34−36, 43, 45, 143, 149, 

160, 174, 319, 367−370 
sidelobes, 91−95, 208−210, 317−320, 368 
stacked beams, 41, 43, 370 

Area of clutter in beam, 62−65, 91 
A-scope display, 4 
Atmosphere, exponential reference, 229−231, 

281 
Atmospheric attenuation (see absorption) 
Atmospheric lens factor (loss), 23−24, 95, 

255−257, 307, 361 
Atmospheric refraction, 6, 23, 56, 225−232, 

269, 281 
index of, 226−233, 340−341 
ionospheric, 258−260, 264  

Atmospheric temperature, 227  
Attenuation 

atmospheric (see Absorption) 
transmission line, 8, 52, 96, 211, 217, 

258−259 
Automatic detection (see Detection) 
Average transmitted power, 11, 18, 21, 33, 47 
 
Backscattering coefficient (see Cross section) 
Bandwidth, 6, 13, 17−18, 20 

correction factor, 7−8, 18, 138, 140, 395 
effective noise, 198  
jamming, 96, 343 
losses, 375−378 
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Bandwidth (continued) 
receiver, 56, 139, 349 
signal, 59, 266 
tunable, 95, 134 
video, 139, 377 

Baseband, 127, 220, 384 
Beam-dwell factor, 22, 362 
Beam shape and width (see Antenna) 
Beamshape loss, 8, 13, 19, 38−40, 43, 51, 63, 

143−195, 365−366, 378, 388 
net, 44, 158−160, 171−173, 180−181 

Beamwidth, antenna (see Antenna) 
Beamwidth constant, 42, 148 
Beamwidth factor, 51, 366 
Beaufort scale (wind speed), 324 
Binary integration, 379−381 
Bird echoes, 22, 27, 55, 57, 88, 90, 333−334 
Bistatic radar range equation, 12−14 
Blake, Lamont, xv−xvii 

atmospheric absorption, 225−226, 
228−229, 233−236 

beamshape loss, 145−146 
chart, 9−11, 15−16 
noise temperature model, 16−17, 197−212, 

215−219  
pattern-propagation factor, 274−287, 

296−298 
rain attenuation, 246−247 
range equation, 6−13, 64 
visibility factor for PPI display, 139 

Blind speed, in MTI and Doppler radar, 345, 
349−351, 387 

avoidance of, 107, 387 
Blockage (see Antenna, blockage) 
Boltzmann’s constant, 3, 197 
Brewster angle, 291 
 
Canceler, MTI, 345−348, 384−385 
CFAR detection, 60, 95 

cell-averaging, 80, 88−89, 340, 350 
loss, 348, 381−382, 389−391 

Chaff, 55, 57, 76−79, 94, 100, 335 
cross section of, 343−344 

Chirp (see Pulse compression) 
Chi-squared target distribution, 18, 118−120, 

134, 140, 161, 385 
Circular aperture antenna, 50, 148, 368 
Circular polarization, 16, 79, 81, 86, 96, 137, 

263, 269, 292, 342 
Clouds, attenuation in, 206, 253−255, 269 
Clutter 

amplitude distribution of, 58−60, 311, 
321−323, 327, 332−335, 340−344, 
389−394  

area of, in beam, 62−65, 91 
birds, 22, 27, 55, 88, 90, 333−334 
chaff, 55, 57, 76−79, 94, 100, 335 

cross section of, 343−344 
correlation loss, 59, 76, 79, 88, 389 
correlation time, 58, 389 
defined, 55 
detection range in, 62, 74, 81, 85−86 
discrete sources of, 57, 60, 88−91, 

333−335 
distribution loss, 60, 76, 389 
energy, 56, 57−58, 61, 68−71, 73−76, 79, 

82, 84, 87 
ground (land), 327−333 
pattern-propagation factor, 313−318, 337 
polarization factor, 57, 79−81 
in range ambiguities, 55, 57−58, 60−61, 

68, 79 
sea, 323−327 
surface, 57, 62−76, 91−93, 311−333, 352  
surface clutter reflectivity, 66−67, 76, 

311−313, 324−326, 328−331 
velocity spectrum of, 94, 319−320, 

331−332, 335, 339−340  
volume, 77−88, 93−94  
volume reflectivity, 78, 88, 336, 340−343 
wind effects on, 79, 94, 319, 324, 326, 

331−332, 338−340, 344 
Clutter attenuation, 348−351  
Clutter detectability factor, 58−60, 79, 318, 

321, 338, 388−394 
Coherent Doppler radar (see Pulsed Doppler 

radar) 
Coherent integration, 14, 35, 111, 128, 135, 

137, 186, 386  
Coherent MTI, 345−347 
Coherent processing interval, 11, 107, 348, 

387 
Collapsing loss, 13, 378, 383, 394 
Compression ratio (see Pulse compression) 
Constant-false-alarm-rate detection (see 

CFAR) 
Continuous-wave radar, 12, 58, 69 
Correlation time 

of clutter, 59, 389 
of target, 119, 136, 185 

Cosecant-squared coverage, 39−41, 364, 370 
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Coverage chart, 27−28, 37 −45, 276, 
306−309, 378 

Cross section 
radar targets, 2, 9, 16, 104, 118, 360 
chaff, 345 
clutter, 57, 66, 78, 311−313, 326, 336, 

340, 360 
polarization dependence of, 52, 360  
Swerling’s models, 18, 118−121, 124−127 

CRPL exponential atmosphere, 229−231 
Cumulative integration, 381  
Cumulative probability of detection, 28−30, 

46, 144, 152−185, 367, 372 
 
Delay time, range, 22, 231, 255, 264−268, 

292, 362−364, 372 
Detectability factor, 4, 18, 28, 109−140, 374 

in clutter, 58−61, 80, 318, 321, 338, 
389−394 

defined, 4−5 
effective, 13−14, 367, 370−388 

Detection 
automatic (electronic), 4−5, 8, 11, 18, 95, 

106, 109, 138, 375, 390, 394−395 
binary, 379 −381 
coherent, 128−129 
envelope, 101, 109−110, 127−129, 198 
probability of, 5, 28, 49, 109−129 

cumulative, 46, 144, 366 
sequential, 46 
theory of, 109−140 

Detector 
envelope, 101, 109−110, 127−129, 198 
loss, 127− 130 
phase, 217 

Dielectric constant, 235−255, 288−289 
Diffraction, 7, 68, 273, 296−306, 313− 317, 

325  
knife-edge, 299−303, 330 
region, 273 
smooth-sphere, 296−299 

Diffuse reflection, 211, 293−295, 302 
Divergence factor, 295−296, 302−304 
Diversity, 19−20, 134−138, 157, 161, 

168−171, 178−181 
frequency, 22−24, 100, 119, 136, 362 
gain, 134 
polarization, 119, 137 
PRF, 90, 106, 351, 364, 385−386 

space, 137 
time, 136, 367 

Doppler filter, 12, 344, 348, 350−351 
matching loss, 386 
straddling loss, 358 

Doppler frequency shift (see also velocity) 
ambiguity, 58 
spectrum of clutter, (see Clutter, velocity 

spectrum of) 
Double-threshold detection, 379−381 
Douglas sea state, 324 
Duty cycle (factor), 21, 23, 26, 73, 75, 86, 

363, 372 
jamming, 101 

Dwell (observation) time, 4, 20−22, 35, 49, 
59, 158, 362, 396 

azimuth, in 3-D surveillance radar, 
43−44 

Dynamic range, 219−222, 333, 361 
 
Earth’s radius, 38, 66, 231−232 
Eclipsing, 13, 21, 23, 26, 362−364, 367, 372 
Efficiency 

aperture, 36, 51, 366−369 
Doppler filter, 386 

Effective radiated power of jammer, 96 
Electron density, 258−264 
Elevation angle, 7, 19, 28, 34, 37−50, 72, 78, 

208−209, 231−232, 255−257 
Energy 

clutter, 55−88 
density, 2, 36 
jamming, 98 
pulse, 2 
received (available), 2, 23, 34, 51−52 
transmitted, 7, 11 

Energy ratio, 2, 4, 8, 17 
required (see Detectability factor) 

Envelope detector (see Detector) 
Equivalent Earth’s radius model (see Earth’s 

radius) 
Exponential distribution 

of bird altitudes, 334 
of clutter power, 321 
of cross section, 153 

Exponential reference atmosphere, 229−231 

False-alarm probability, 50, 89, 111−115, 383 
in binary integrator, 379 
on cathode-ray-tube display, 138 
on Weibull-distributed clutter, 389−390 

Fan-beam search pattern, 37−39, 365 
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Faraday rotation, 257−264, 373 
Far field of antenna, 83 
Far zone for clutter, 315 
Filter 

bandwidth correction factor, 4, 7−8, 
18−20, 138, 376, 395 

Doppler, matching loss, 386 
IF, matching loss, 13, 140, 375−378 
matched, 2, 5−6, 17−18, 109−110, 267 

Filter straddling loss, 358  
Flat-Earth model, 62−66, 278−280, 315 
Fluctuating target, 9, 118−138 
Fluctuation loss, 22, 52, 132−134, 375, 385  
Fog attenuation (see Clouds) 
Forward scatter, 210, 293−294, 313 
Frequency agility and diversity, 22−24, 100, 

119, 136, 362 
Frequency spectra, 264−268 

clutter, 56, 59, 76, 94, 318−320, 331−332, 
335, 339−340 

Fresnel reflection coefficient, 211, 288−292 
Fresnel zones, 292, 295 

Gain 
antenna, 2, 39 

sidelobe, 91 
diversity, 134, 367 
integration, 131 
jammer, 95, 104 
obstacle, 299 
receiver, 24, 35, 197, 217 

Galactic noise, 201, 205  
Gate (see Range gate) 
Gaussian  

antenna pattern, 72, 144, 147 
clutter spectrum, 318−319 
distribution, 198, 293 

of IF noise, 59, 109, 197 
of clutter, 321 
of jamming, 96  
of target signal components, 118, 121, 

135, 385 
filter shape, 376 

General radar equation, 14 
Graphical solutions of radar equation, 9, 24, 

57, 62, 71, 309 
Grazing angle, 53, 60, 66, 279−286, 330 

critical, 31 
Ground clutter, 327−333 
Ground noise (see Surface noise) 
Ground range, 279−285 
Group velocity of radio waves, 265 

Half-power bandwidth (see Bandwidth) 
Half-power beamwidth (see Beamwidth) 
Height-gain factor, 277, 297, 305 
Horizon range, 298, 303, 309, 317 
 
ICAO standard atmosphere, 227 
Image antenna, 278−280 
Improvement factor, clutter, 58, 61, 344−347 
Index of refraction, 226, 231−233, 238, 257, 

297, 341 
Integration, 4, 7, 12, 18, 36, 92, 111, 135, 366 

binary, 379−383 
coherent, 14, 35, 128, 136 
cumulative, 153−184, 381 
of fluctuating targets, 366, 375 
video (noncoherent), 61, 103, 122, 127, 

129−134, 145 
Integration gain, 130, 145, 388−389 
Integration loss, 36, 127, 129−134, 379−383 
Integration (observation) time, 4, 14, 19, 62, 

111, 136, 386−388 
Interference, combined, 55−56, 106 
Interference region, 273, 298, 302, 309, 

313−317, 325, 327, 329, 332, 353 
Intermediate frequency (IF) amplifier, 218 
Intermediate region, 273, 296, 298, 302−306, 

314−317, 330 
Ionosphere, 257−268 

Faraday rotation, 257−262, 373 
refraction, 258−260, 264 

Iterative method, range calculation, 24 

Jamming (see also Chaff) 
deception, 101−105 
equivalent temperature, 98−100 
energy, 55 
escort, 95  
noise, 94−101 
polarization, 360 
range equation, 96−98, 103−104 
repeater, 104−105  
self-screening, 95 
stand-off, 95 

Land clutter, 327−333 
Lens loss, 23−24, 255−257, 307, 361 
Limiter, 215 

loss, 364 
in MTI, 390 

Linear detector, 113, 146, 383 
Line-of-sight, 302, 309, (see also Horizon 

range) 
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Lobes in vertical coverage, 27−28, 276−277, 
306−309 

Lognormal clutter, 321−323, 327, 332, 334, 
389, 391 

Loss 
antenna, 200, 211−215, 367−370 

blockage, 41, 51, 366, 369 
cosecant pattern, 39−41, 364, 370 
illumination efficiency, 36, 147, 210, 

366−368 
mismatch (antenna), 212−215, 365 
phase and amplitude errors, 210, 369 
phase shifter, 210−211, 365, 369 
spillover, 41, 366, 369  
surface tolerance, 51, 369 

atmospheric attenuation, (see Absorption) 
beamshape (see Beamshape loss) 
beamwidth factor, 51, 366 
binary integration, 379−381 
CFAR, 348, 381−382, 389−391 
clutter correlation, 59, 76, 79, 88, 389  
clutter distribution, 60, 76, 389 
collapsing, 13, 378, 383, 394 
detector, 127−130 
Doppler processing, 386−388 

Doppler filter matching, 386 
transient gating, 387 
velocity response, 385−386 

duplexer, 217, 358 
eclipsing, 366, 372 
Faraday rotation, 257−264, 373 
fluctuation, 22, 52, 132−134, 375, 385 
integration, 36, 127, 129−134, 379−383 
integrator weighting, 382 
lens, 23−24, 255−257, 307, 361 
matching 

Doppler filter, 386 
IF filter, 375−378 
range gate, 386  

miscellaneous, 8, 20, 52, 140, 357, 379 
MTI, 384−386 

blind phase, 385 
noise correlation, 384 
velocity response, 385−386  

operator, 138, 395 
phase shifter, 212, 369 
polarization, 16, 52, 96, 262, 360 
processing, 7, 52, 374, 379−388 
quantization, 369 
radome, 365, 370 
range-dependent response loss, 52 

receiving line, 6, 8, 217, 364 
receiving noise loss, 51 
rotary joint, 210, 358 
scan distribution, 52, 366−367, 381 
scan sector, 19, 359, 374 
scan, 369 (see also Beam-dwell factor) 
search, 34, 44, 51−54, 364−367 
statistical, 364, 370−374, 385, 387 
straddling, 387−388 

angle, 388  
filter, 388  
range, 387 

transient gating, 387 
transmission line, 8, 96, 211, 358−359 
 

Matched filter, 2, 17−18, 53, 376−377 
in detection, 109 
signal-to-noise ratio, 2, 17 

Matching loss (see Loss, matching) 
Median cross section, 9 

of clutter, 321−322, 327, 334−335 
Meteorological echoes (see Clutter) 
Minimum detectable signal, 4, 216 
Modulation, intrapulse, 7, 59, 82, 96, 348 
m-out-of n integrator, 379−381 
Moving-target detector (MTD), 92, 352 (see 

also Pulsed Doppler radar) 
Moving-target indication (MTI), 82, 344−347 

blind speed, 345 
canceler response, 345 
improvement factor, 61, 344−347 
limiter operation, 390 
losses, 27, 384−385 
PRF stagger, 348 

Multifunction array radar, 29, 44−48, 89, 181 
time budget, 46 

Multipath (see Propagation factor) 
Multiple-time-around echoes, 107, 348 

Natural units, for diffraction, 297 
Near region, 70, 273, 314 
Noise 

antenna, 200−215 
cosmic (galactic), 207−208 
jamming, 94−101 
sources of, 200−222 
spectral density, 3, 5 
temperature, 3, 8, 16, 196−222 

Noise bandwidth, 8, 198 
Noise figure (factor), 5, 217−219 
Noncoherent integration, 61, 103, 122, 127, 

129−134, 145 
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Noncoherent MTI, 347 
North’s approximation, 115−117 
Number of pulses integrated, 4 
N-units (refractivity), 226, 228−231, 264 

Observation time, 4, 388 
Obstacle gain, 229 
Operator loss, 138, 395 
Oxygen, absorption by, 233−235 

Pattern factor, antenna, 298, 313 
Pattern-propagation factor, 7, 19, 273−310 

for clutter, 57, 313−318, 337 
for jamming, 96 

Peak power, 2, 18, 20, 96, 102 
Phase detector, 217 
Phase shifters in array antennas, 211−212, 

369 
Phased-array radar, 19, 275, 359 
Phase velocity, 226 
Plan-position indicator (PPI), 4, 138, 394 
Plateau region (clutter), 332 
Polarization, 16, 19, 81, 118, 137, 246 

effect on clutter, 81, 326 
factor (loss), 52, 96−105, 360 
effect on reflection coefficient, 288−292 
rotation (Faraday), 260−264 

Post-detection integration (see Integration, 
video) 

Power 
average, 11, 18, 21, 33, 47 
density, 97 
peak, 2, 18, 20, 96, 102 

Predetection integration, 14, 35, 128, 136 
Probability 

density function 
of clutter, 60, 311 
of cross section, 119, 121 
of noise, 115, 197  
of signal-plus-noise, 114, 125 

of detection (see Detection probability) 
of false-alarm (see False-alarm probability  

Propagation effects, 225−310  
Propagation factor for clutter, 312−318, 337, 

352 
Pulse compression, 7, 17, 26, 63, 75, 86, 363 
Pulsed Doppler radar, 348−351 

detection range, 11, 15−16, 24, 73, 80 
loss factors, 386−388 

Pulse repetition frequency (PRF), 4, 21, 
57−58, 348 

Pulse repetition interval (PRI), 11, 21, 44, 57, 
363 

Pulsewidth, 2, 7, 63, 377 
 
Quality factor, jamming, 96 
Quantization loss, 369 
 
Radar range equation 

Barton’s, 14−16 
bistatic, 12 
Blake chart, 9−11 
Blake’s, 6−8 
for clutter, 57−93 

surface clutter, 62−77, 91−93 
volume clutter, 77−89, 93−94 

in combined interference, 55−57, 106 
computer program, 22 
continuous-wave radar, 74 
development of, 1–5 
graphical solutions, 24−27 
Hall’s, 13−14 
in jamming, 94−106 
for modern radar systems, 20−24 
original, 5−6 
pitfalls in, 16−20 
pulsed Doppler radar, 75 
search radar, 33−53 

derivation, 34−36 
losses in, 51−54 
search fence, 48−50 
multifunction array radar, 44−48 
2-D air surveillance, 37−42 
2-D surveillance, 43−44 

Radius of Earth, 38, 64, 231 
Radome attenuation, 211, 365, 370 
Rain 

attenuation, 246−251 
reflectivity, 340−343, 360 

Range, unambiguous, 12, 21, 57, 107, 348, 
362, 387 

Range delay time, 22, 231 
Range-dependent response, 20, 51, 361−364 
Range equation (see Radar range equation) 
Range gate, 72, 87, 383, 386 
Range-height-angle chart, 27−28, 37−45, 

276, 306−309, 378 
Range resolution, 63 
Rayleigh distribution 

of clutter, 57, 79, 321−322, 332, 334−335, 
340−344 

of noise, 59, 198 
of target signal, 120, 135−137 
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Rayleigh roughness criterion, 292 
Receiver bandwidth (see Bandwidth) 
Receiver filter, 13, 140, 375−378 
Receiver noise factor, 5, 216−218 
Receiver temperature, 3, 8, 16, 196−222 
Reciprocity principle, 201, 258 
Rectangular 

aperture, 51, 147, 368 
filter, 377 
gate, 73, 386 
grid, in raster scan, 160 
pulse, 2, 63, 266−268, 363, 377. 387 

Reflection coefficient 
from mismatch, 212−215, 358 
of surface, 201, 287−296 

Reflection from surface, 6−7, 27−28, 
201−202, 209, 221, 274, 314 

Reflectivity 
chaff, 344 
precipitation,  
surface, 66−68, 311−313, 324−326, 

329−331  
volume, 78, 336, 340−344  
(see also Cross section) 

Refraction (see Atmospheric refraction) 
Refractivity, 226−331, 264−265 
Resolution cell, 55, 58, 69, 77  

range, 63 
resonances, absorption, 233−237 
Rician distribution, 114, 294 
Roughness (of reflecting surface), 67, 

292−294, 324, 328 

Scan, 19, 22 
loss, 369 (see also Beam-dwell factor) 
modulation of clutter, 319, 338, 346 
raster, 45, 144, 160 
sector, 34 
search, 34 

Scan distribution loss, 52, 366−367, 381 
Scan sector loss, 19, 52, 359, 374 
Scanning-beam 3-D radar, 43−45 
Sea clutter, 55, 318, 321−327 
Sea state, 324−326 
Search radar (see Surveillance radar) 
Search radar equation, 33−54 
Sensitivity time control, 22, 40, 361 
Sequential detection, 46 
Sidelobes, antenna, 41 

clutter in, 63, 72, 91−94, 317−318 
jamming in, 95, 98, 105 

sidelobe cancellation, 97 

surface noise from, 208−210 
related to aperture efficiency, 368  

Signal energy, 3, 23, 62, 81, 129, 146, 357, 
360−394 

Signal power, 103, 121, 144, 211, 269 
Signal processing, 59, 219, 344−353 

loss, 8, 20, 52, 140, 357, 379 
Signal-to-clutter ratio, 60−61, 72, 73, 84 
Signal-to-interference ratio, 55−57 
Signal-to-noise ratio, 3, 23, 20, 110, 115 

energy, 2, 6, 17, 109 
Single-pulse detection, 114−115,  121−122, 

128 
Single-scan acquisition probability, 28, 46 
Small-signal suppression, 129 
Snow, attenuation in 251−252 

reflectivity of, 341−342 
Solid angle of beam, 34−36 

search, 34, 39−40, 364 
Spectrum of clutter (see Clutter, spectrum of) 
Specular reflection, 210, 278, 287, 292−294, 

312 
Specular scattering coefficient, 292−294 
Spherical Earth, 65, 280−287 
Spillover, 41, 51, 201, 366, 369 
Square-law detector, 103, 111−113, 145, 381, 

383 
Stacked-beam radar, 43−44, 370 
Straddling loss (see Loss, straddling) 
Surface clutter (see Clutter, surface) 
Surface noise, 202, 208−210 
Surface reflection, 7, 201, 273−276, 287−296 
Surveillance radar, 25−28, 38−48 

coverage, 308 
loss budget, 53 
 

Target cross section (see Cross section of 
radar targets) 

correlation time and frequency, 119, 136 
fluctuation, 118−127, 132−138, 375 

Temperature, noise, 3, 8, 16, 196−222 
Thermal noise, 196−222 

atmospheric, 203−208  
sources of, 199 

Three-dimensional (3-D) radar, 36, 43−44, 
210, 370 

Threshold detector, 109, 111−115, 127, 
379−382, 389−391 

Time 
correlation, 59, 119, 136 
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Time (continued) 
dwell, 4, 22, 44, 158 
integration (observation), 4, 338 
search frame, 35, 45, 49, 172 

Time delay, range, 56, 231, 256, 264−268 
Time-on-target (see Time, integration) 
Track-while-scan, 29, 88−90, 173 
Transient gating loss, 387 
Transmission line loss, 8, 96, 210, 358−359 
Transmit/receive (T/R) module, 53, 211, 358 
Troposphere, 6, 23 

attenuation, 233−245 
loss temperature, 199−205 
refraction, 225−232  

Two-dimensional radar, 19, 25, 37−42, 53, 
210, 365, 370 

 
Unambiguous range, 12, 21, 26, 57−59, 87, 

348 
 
Vegetation factor, 211, 295−296 
Velocity 

of clutter, 59, 79, 87, 90−93, 319−320, 
326, 331−332, 334−335, 338−340 

group, 265 
phase, 226 
response, in MTI and MTD, 344−352, 

385−386, 394 
of target, 49, 172 
unambiguous, 21 (see also Blind 

speed)Velocity response loss, 
385−386 

Video bandwidth, 139, 377  
Video integration (see Integration, video) 
Visibility 

factor, 4−5, 9, 20, 109, 138−139, 377 
interclutter, 291 

Volume clutter (see Clutter, volume)  
Volume (solid angle), search, 34, 36, 39−40, 

44, 64, 181, 366 
 
Water vapor, tropospheric, 203−205, 

226−230, 235−245 
Waveform, signal, 2, 7, 11−13, 21, 57, 102 , 

107, 119, 265−268, 348, 375−377 
Wave height, 293, 323−324 
Wavelength, radar, 3Weather attenuation, 
206, 246−255  
Weather clutter (see Clutter, volume) 
Weibull distribution, 60, 76, 321−323, 327, 

332, 340, 389−393 
Weighting function 

antenna, 147−148  
Doppler filter, 350, 386  
integrator, 144−146, 149, 382 
receiving filter, 376−377 

White noise, 59−60, 96, 109, 197, 311, 344, 
388 

Wind effect on clutter, 79, 94, 319, 324, 326, 
331−332, 338−340, 344 
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